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Preface

This volume contains the eight chapters: ¢’
(1) Arithmetic Functions - I - The Number of Divisors of an

Integer ' )

(2) Arithmetic Functions - II - The Sum of the Divisors of an
Integer h

(3) Arithmetic Functions - III - The Distribution of Primes and

the Function w(n)

(4) The Buclidean Algorithm and Linear Diophantine Equations

(5) The Gaussian Integers ,

(6) Fermat's Method of Infinite Descent

(7) Approximation of Irrationals by Rationals

(8) A New Field

These supplements were written for students who are especially
good in mathematics and who have a lively interest in the subject.
The author's aim in (1) and (2) is to lead the reader to discover
for himself some interesting results and to experience the thrill
of mathematical discovery. The others are more egpositbry in
nature, but they confain exercises to clarify the material and to
give the reader a chance to work with the concepts which are intro-
duced. It is suggested that the supplements be read with penpil
and naper at hand. All questions should be pondered and answered,
if possible when they occur.® A casual readiné of these supplements
is, in most cases, unprofitable, and in some cases impossible.

Answers have been provided. However, it 1s suggested that
these znswers should not be consulted until the reader has finished
working through the unit or until he reaches a poirt where he needs
an answer in order to proceed.

For the most part tﬁe units are indspendent of each other.
However, some have somewhat tenuous ties with certain chapters of
the 1lth grade materizl of the SMSG, (Intermediate Mathematics).

In particular, Sections (1) and (2) may be used at any time
after the student has completed Chapter 3 of Intermediate Mathe-

matics. While they are independent, Section (2) is “easier and more

meaningful if Section (l)whas veen done breviously.

~
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Section *(3) may be read also after Chapter 3 of Intermediate

Mathematics. However, on the last page logarithms are mentioned
and for this reason it may be more useful after Chapter 8 of Inter-

mediate Mathematics. (logarithms ana exponents).

. Section (4) may be used at any time after Chapter 2 of Inter-
mediate Mathematics (in which linear equations are discussed).

Section (5) is designed to follow Chapter 5 on complex numbers
and also to pave the way for the section entitled "A New Field".
Section (6) naturally follows Chapter 9 on induction. )
Section (8) assumes familiarity with Chapters 5 and 15 of
Intermediate Mathematics.
' Suggestions for further reading are:
The Enjoyment of Mathematics by Hans Rademacher and Otto Toeplitz,

Princeton University Press, Princeton, 195T7.
What Is Mathematics? by Courant and Robbins, Oxford, New York, 1941, -
Number Theory and Its History by &. Ore, McGraw-Hill, New York, 1948,

e




1.
ARITHMETIC FUNCTIONS.

" Leopold Kronecker, one of the great mathematicians of the
nineteenth century is supposed to have said in an after dinner
speech "God made the integers; all the rest is the work of man.
The basic role of the integers in the development of the real

number system lends some welght to Kronecker's statement. In
your work with functions the domain of definition of the func-
tion has usually been the set of real numbers or some subset of
this set. There are many interesting Ffunctions, however, which
have for their domain of definition the set of positive integers.
Such functions are called arithmetic functions. In the units
which follow we will consider several arithmetic functions which
prove useful in stating and answering many qﬁestions about :

integers.

I
THE NUMBER OF DIVISORS OF AN INTEGER

Some people from time to time advocate changing the base of

our number system from ten to twelve. To say that our numbers
: &

are written in the base ten means that we interpret a symbol

like 312 to stand for
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3-10° + 1-10 + 2.

If Qe were using the base six then 312 would stand for

3-62 + 16+ 2 a
which would oe 116 in the base ten.
In any number base, b , we would need b symbols for the‘num-
bers O, 1, 2, . . . , Db-1. 4 .
In particular if we used the base twelve we would need two new
symbols, say t and e for 10 and 11l. o

Then 312 1in the base twelve would represent

3.12°

Qqr 446 1in the base ten.
The symbol 4et2l would represent

y.12% 4 11123 + 10-12° + 2.12 + 1,

+ 1-12 + 2

which would be 10347 in the base ten.

The claim is made that the base twelve would make arithmetic easlier.
The fractions 1/3, 1/4, 1/6, and 1/12 instead of having repre-
sentations .333 ... , .25, .166. . . , and .083 .

would have the simple form .4, .3, .2, and .1l .

Whatever the merits of this proposal, it seems unlikely to be
adopted. However, it does suggest an interesting mathem&tical
problem. Suppose we wanted to find a number with a large number

of divisors, but which was not too large to serve as a vase for
system of numbers. The advantage would be that the more divisors
the number has, the more fractions would have convenlent finite
representations. As a start we might make a table for the first
few integers.

y,




Nt A

Number of
Integer Divisors . Divisors
1 T 1 1
2 1, 2 2
3 i, 3 2
4 1, 2, 4 3
5 1, 5 2

Extend this table for all the integers up through 30.
Which number in the table has the smallest number of divisors?

If we extend our table will we ever encounter another integer with
this number of divisors? Why not?

Make a 1ist of the numbers in the table with two divisors.
The numbers‘in this 1list are given a special name; they are called

rime¢ numbers #

aow 1ist the numbers with three divisors. Do you notice any
propérty which they have in common besides that of having the same
number of divisors? Are there other numbers in the table with this
property? Try to state a theorem about all the numbers with three
divisors. - ‘

How many numbers in the list have an even number of divisors?
Which numbers do not have an even number of divisors? Check this
1ist with your theorem. Can you guess how many numbers less than
fifty/have an even number of divisors? Less than 101?

Which numbers in your table have a prime number of divisors?
Do you notice any other property that these numbers have in common?

.Could you make a guess about the form of a number with a prime

number of divisors. How many divisors does 8 have? 32?7 272

642 22 3ﬁ? See if you can devise a theorem which states exactly
when the number of divisors is a prime. -

Maké another table show1nr the number of times each inueger
appegrs in the number of leiSOPS column of your first table That
is, how many lntegers up to thirty have one divisor, two divisors,
three divisors, etc. We can see from this new table that most of

the numbers up through thirty seem to have an evén number of




divisors. One of the distinguishing traits 6f a mathematician is
his tendency to gereralize his results. This means that once he
has solved a particular problem, he begins to think of a large
class of similar problems. This tendency to try to see the origi-
nal problem as a special case of a much larger problem is one dif-
ference between a mathematician and a person who likes to solve
problems. In the light of the information we now have about the
divisors of numbers, see if you can generallize your theorem about

" -
|

the numbers which have three divisors.

The starting point for our discussion was the problem of find-
ing a number base which was not too large, but which had many
divisors. From this point of view ten has as many divisors as any
other number up to ten. However, the restriction that the number
not be too large was designed to keep the arithmetic simple. The
smaller the base the easier the addition and multiplication tables A
are to learn. Taking into account both of these things, six weould
seem to be a2 better choice than ten. It would then be unnecessary
to learn such troublesome parts of the multiplication table as
7x9, 9x6, etc. Unfortunately, for this base there are also dis-
advantages. - Large numbers would require many more digits in their
representatio%lthan they require in the base ten. So wé are forced
to conclude that ten isn't really such a bad number base after all.

Suppose we pursue our aim of finding a number with a large
number of divisors, even if it isntt the most practical number base.
Which number up through thirty has the largest number of divisors?
Up to fifty are there any numbers with nine divisors? Ten divisors?
More than ten divisors?

Of the numbers less than 100, which one has the greatest
nunber of divisors?

If you have an answer to the last §iestion, vou are probably in
a good position to devise a formula for the number of divisors of
any particular integer n . (1If not, try to consider some special
cases. For example, we know how many divisors any-prime has. How

mar;y divisors does pk , a powver of a prime, have?) The usual

notation for {he number of divisors of n is ’t(n) , where ¥ is
the Greek letter tzu. Try to write out an expliclt expression for
2 (n).
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If you are havingtrouble actually writing down the expression,
you are probably being handicapped by a lack of a suitable notation.
While this has nothing to do with the idea which enables you to
determine the number of divisors fer any particular integer, devis-
ing a suitable notation turns out to be of great importance irn many
parts of mathematics. Lack of a suitable notation for numbers 1is
thought by many to explain the Greek preference for geometry and
the relatively small amount of arithmetic and algebra they were
able to develop. Perhaps if you write n in the form

m1 m, m,,
n =p;"Py ---P, ,where the p's are the distinct prime divisors of
. n and the m's tell you how many times the prime 1is a factor of
n, you will find this notation helpful in writing cur your expres-
sion for T (n)

Find all the numbers less than 100 which have six divisors.

Find the smallest positive integer with fifteen divisors.

Find all primes that are one less than a perfect square. One
less than a perfect cube. One less than a fourth power. How many

primes are one less than a kth power? Why?




2. .
ARITHMETIC FUNCTIONS

1 IT
THE SUM OF THE.DIVISORS OF AN INTEGER
"In the beginning God created the heavens and the earth."
The Genesis account of creation goes on to tell how God labored
. for six days, and on the seventh day He rested. As early as the
sixth century B. C. the Pythagorean brotherhood classified integers
. into deficient, abundant, and perfect numbers according to whethéer
the sum of the proper divisors of the integer was less than, great-
er than, or equal to the integer itself. Proper here‘means that
the integer itself is not counted as one of its divisors. Thus the
fact that 6 and 28 were perfect numbers, that is, 6 =1 + 2 + 3
and 28 =1+ 2+ 4 + 7 + 14 , gave them a spécial significance.
The ancients saw in the number six a symbol of the perfection of
the creation. The discéﬁery that the phases. of the moon repeat
every 28 days may also have had a part in the designation of these
as perfecﬁ numbers. '

Can you find any other perfect numbers? ,
Euclid includes in his ELEMENTS a rule for obtaining even per-
fect‘numbers, Before we consider Euclid's rule, let us take 2
detour and consider the problem of finding the sum of the divisors
of a number. The sum of the divisors of an integer is an arithmetic
function, that is a function defined over the positive intergers.
We first note that the sum of the divisors is equal to the sum of
the proper divisors and the number itself. -The usual notation for
the sum of the divisors of n 1is 0(n) where T is the Greek letter
~sigma. To try to find a formula for 7(n) directly is not too easy.
However, we can usp the approach of the experimental scientist and
collect some data. Suppose we make a table for ¢ (n)
A n Divisors of n 7(n)
1 1
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Extend the table for all n le§§ than 31

In our notation a number P 1is perfect 1if o (P) = 2P .
Mark the integers which are deficient with a D , those which are
abundant with A , and ose which are perfect with P .

How many of each kzgf are there in your table?,

You probably have alrgady noticed.that the éasiest numbers for
which to compute a(n) w:Se the primes. (A prime is a number which

. . has exactly two divisors.)

Complete the following theorem: If p is a prime,
C 0 (p) = )
The easiest case after that o. the prime 1is probably that of
an integer which is a power of a prime.

‘What are the divisors of pk 9 . Can you find the sum of Vka)?

(HINT: Xt 1 = {(x - 1) (xF + e s x+1) .
,Tg prove this simply multiply out the right hand side.)

¢ Now suppose that n = pkq where both p and q are primes.
What are the divisors of n 2?2 How many are there? What is thelir-
gam?

Now suppose n = pkq2 . What are the divisors of n ? How

many are there? What is their sum? <

If n = pkqS , can you guess what 7 (n) 4is in this case?
Check your answer in a few cases and see if you can prove 1it.

Now it shouldn't be too hard to devise a formula for ¢ (n)
'for any\ n , provided we write n in the form

my My My
n = Py” PoT - - P, where the p's are distinct primes and the

~

m;s tell us how many times the prime is a factor of n’.

Use your formula to compute @ (6), ¢ (12), 7 (18), T(24),
o (28), ¢(30), o (144) .

From your table of ¢ (n) 1list all n for which o(n) is odd.
Do you notice any property these integers have n common? Complete

the following theorem and try to prove it:
If o(n) 4is odd, then n is
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Let us now return to our original problem of finding perfect
nuymbers. We remember that in order fdr n ta be perféct

T(n) = 2n . Buclid arrived at_the following rule: n = ofM-1eoMm _ q)
£

is a perfect number if oM _ 1 is prime. Use Euclid'!'s result to

‘find other perfect numbers. o Try to prove Euclid's theorem:

T . \
If n= 2" 1(2m - 1) anda 2™ -1 1is a prime, then h 1is a perfect
number.

3 .
" As you can see from your computations with Euclid's theorem,
one good mathematics problem often leads to another. Euclid's

theorem tells us that 2m-1(2m - 1) 1is perfect 2’ o™ _ 3 is a
prime. So that we can find as many perfegt numbérs as we can find

primes of the form oM e
Suppose we consider this problem a bit. If m 1is 2,

oM .1 =3 E which is a prime. This gives the perfect number 6/;

If m 1is 3, ofm - 1 =7, which is also prime This gives the

~\m

perfect number 28 . If m is 4 , 2 -1 =15, which is not

prime. For m =5, oM _ = 31 , which is prime and you can see
that the perfect number which corresponds to m = 5 1is already quite
larée. Test values of m up to 13 to see how many more perfect

numbers you can find. .

The primes of the form oM _ 1 are called Mersenne primes

. after a French monk, Father Marin Mersenne (1588-1648), who listed

gleven values of m less than or equal to 257 for which he

claimed oM _ 1 was prime. Modern digital computers have been em-
ployed to check and extend Mersenne's results and it has been found
that two values 67 and 257 which Mersenne stated gave primes, do
not, and that there are three others less than 257 which do give
primes and which Mersenne missed. Your own calculations have prob-
ably convinced you that for large values of m 1t may be hard to

tell whether oM _ 1 is prime or not. However, we could decreasc
the number of trials by noticing that if m itself 1is not prime,

m

then 2 - 1 cannot be Therefore we have to test only oP _ 3




10 X .
where p 1is prime. Th 1k this over and see. 1f you can prove the

statement: If m 1s not prime, oM _ 1 1s not prime.

The Mersenne p;?mes with M 1less than 2300 are now complete-
ly determined. The values of m which give Mersenne primes are
2, 3,5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,

. and 2281. Accordingly sevente€en even perfect numbers are known. -
The last five of these were found in 1952 by SWAC, the digital com-
puter at U.C.L.A. The Mersenne prime 22281 - 1 is also the largest

prime known. It has at least 686 digits and gives a perfect number

with at least 1372 digits. _
There are still two unsolved problems concerning perfect num-

bers We have shown a number in Euclid's form 2m—1(2m -~1) 1is

perfect whensver 2m - 1 4is prime.- It can also be proved that any
even perfect number m@st have this form Try to pfove this for
yourself. (It is not very easy.) Howevef, it is still unknown
whether there are a finite number of even perfect numbers or infin-
itely many That 15 we do not know whether or not there are infin-
itely many Mersenne primes. —
The other problem sounds easier. Find an odd perfect number.
At the present time no odd perfect numbers are known and many mathe-
maticians think it likely that none exist. However, no one has been
able to prove this The best that is known is that if an odd pef-‘
feet number exists, it must have at least six different prime fac-

tors and cannot be less than 1.‘w<1014

There is one result about perfect numbers which is true whether
the perfect number is even or odd. Prove that the sum of the
reciprocals of all the divisors >f a perfect number is 2.
'(HINT: Call the divisors d1 , da 5 ., dk and' notice that for

[

every divisor d1 s % = d1 , 1s also a divisor of n .)
‘ 1
We have been able to restate our original problem of determin-
ing perfect numbers in terms of the function o (n) . But this
arithmetic function is useful in other problems besides that of

finding perfect numbers. If you have read part I of this unit, you




had T

¢ .
\ 1,
\ may remember that we found an expression for the number of divisors
of an integer n , T (n)

12 3 mr'

If n=p; PPy~ .. p, , we found that T(n) = (ml‘+l)

(m2 + 1) ... (mr + 1) . 1In this part we found that
o 2 . Iy 2 LMy
V'(.n)-(l-i-pl-i-pl-*/..+pl)(l+p2+p2+...+p2)

m , :
(1 + o prr) . If this expression for ¢'(n) is

multiplied out we get a sum which contains as summands all the

divisors of n and each exactly once.- Hence if we replaced each

summand by a 1 we would get for the sum exactly T(n) ,

numoer- of divisors of n . This is easlly seen by replacing each

p in the‘formula for "(n) by 1 and then the formula reduces

to our formula for T (n) .
Thus\ we can look at ¢(n) as a generalization of T(n)

This is sometimes indicated by writing @ (n).= T (n) , the sub-

’ . script zero indicates that we are taking the um of zer'ot powers
e of the divisors of n . ¢/ (n) = ¢(n) 1is the sum of the first
~powers of the divisors of n . Similarly mathematicians found it !
natural to ask for the sum of the kth powers of the divisors of }f-\
n . Try to devise a formula for the sum of the k-th powers of the *

divisors of .~ n

k

. m
SO ENT: o (n) = (14 P e (D)KL (0 D)) L (K e e

k

(p2)K .

Simplify.)
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ARITHMETIC FUNCTIONS

, IIT-
THE DISTRIBUTION OF PRIMES AND THE FUNCTION .m(n)
One of thd Qost 1ntéfesting problems in the study of the
integers has t:\go witﬁ the distribution of primes. A prime is an
integer which has exactly two divisors, 1 and the integer itself.
The first” few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31.

» In the supplement entitled Prime Numbers several interesting facts

about primes are discussed One of these 1s that there are infin-
itely many primes It is also shown in that supplement that there .
are arbitrafily large gaps.in the sequence of primes. On the cther
hand, primes can be as close together as 2 and 3 or 3 -and 5.
It isn't hard to see that no two consecutive integers can be prime
after the pair 2 and 3 . Why not? However, as far as the table
of primes has been extended, we still find pairs of primes whose
difference is 2 . Such primes are called "twin primes". The -
first few twin primes are 3 and 5, 5 and 7 , 11 and 13 .

Exercise 1. Make a table of all primes less than 100.

Exercise 2. Find all pairs of twin primes less than 10Q0.

One of the famous unsolved problems of number theory (the
study of properties of the”positive inﬂegersf is the question:
"Are there infinitely many pairs of twin primes?"

Another unsolved problem is that of finding an expression for

th prime number. You can see from your table of. primes that

the n
the distribution of primes seems to be very irregnular. Since mathe-
maticians have not succeeded in finding a formula for tﬁe next prame
after any given prime, a related question could be asked: "How many
primes are there less than or equal to a given integer n 2" We
might give a name to this function which gives the number of primes_
‘S\n . It is usually called w(n) .

Exercise 3. Compute w(n) from your table of primes for
n =10 , 20, 30, 40, 50, 75, 100 .

You can see that finding w(n) for large values of n 1is
quite a job. In fact extending the table of primes gets to be a {

formidable job. To decide that a given 1n£eger n 1is prime, we

[N
oo
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need to be sure that no integer less than n divides n, except 1
of course. After a few trials we notice that it isn't necéssafy to
try as divisors all integers less than npn . If "2 Boesntt divide
n then no miltiple of 2 will either. If" 3 doesn!t divide n

then no multiple of 3, will. We could continue in tR}{s way and it

quickly becomes evident that we only need to try as divisors prime
numbers less than n , and not all of ese. If we don't find a
Prime < 4/n which divides n ,'thengfi
restate this fact as a theorem. ,
Theorem.. If no prime < \/ﬁ divides n , then n 1is a prime.
Exercise 4. Prove this theoren.

must be prime. We can

- LI 4
(HINT: If d divides n , then 3 divides n also.)

Exercise 5. Determine whether 1781 and 4079\’are primes.
With this theorem, we have considerably reduced the work of

déciding whether a given integef is a prime -- we need only tryxdg% -

<

_ Underline all multiples of 2. Then underline all multiples of 3

What we actually did was to take o the integers which were rot

JIVisors,; primes Which are- < 4/n . For large n this is a gpeét'
help. However, it‘only tells us about a particular integer n .
Eratosthenes (c. 230 b.c.) devised a method, which we now call the
sieve of Ertosthenes, for sieving out all primes less than a given
integer if we know the primes up to \/H . It goes like this.

Write down all the integers < n . For example, take n = 25 .

1 234 567 89 1011 1213 1% 15 16 17 18 19

——— — —

20 21 22 23 24 25

——

In this case +4/25 =5 The primes < 4/25 are 2, 3, and 5 l

Then all multiples of 5 . (Note that some numbers will be under-
lined more than once.) Now ali the integers which are not under-
lined are prime These numbers are precisely the primes greater
than /25 and < 25 . B

Exercise 6. Use this sieve method to extend your table of
primes up to 225.

If we return to our problem of finding w(n) we may use the

’

idea of the sieve of Erathosthenes to devise a formula for w(n) .

59 , L
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* prime. There were n integers in our list. First, we took out the

multiples of 2 . There would have been %_ of these if n had
been even. Since n @as odd, % was not an integer, and in that

case we took out a number equal to the greatest integer less than

% , that is 2%; . Similarly when we took out the multiples of 3,
n

we took out.a number equal to the greatest integer less than 3

in this case 2§l . We see then that it would be convenient to

“ -

have an expression for this number of numbers which we sieve out
each time. Let us define, then, the function [x] to be the )
greatest integer < x . Some examples of this new function are:
(31 =3, [2.61).=2, [-5.1] = -6, [4/2] =1, etec. It is clear
that [x] takes on only integral values, although its domain of
definition is the set of real numbers. Strictly spe ing, then it
is not an arithmetic function, but an integraltvalu d function.

The number of integers sieved out each time is now represented by

B fgf e

What we have in mind is to devise an expression for w(n)

like n - [%] - {%] - [5] - . .. - [%k] , where 'pk is the
largest prime ’S 4/n . There are two difficulties with this
method. A In the first blace, 6 was underlined twice 1in our siev-
ing process. It was taken cut as a multiple of 2 and also as a
multiple of 3 . If we are counting the numbers taken out by our
sieve, then we only want to count 6 once. We have taken it out
twice. The same thing happenéd to all multiples of 6. We can

remeédy this situation by adding back ;n [§2§] = [%] , .the number
of numbers < n which are multiples of 6 . Adding it in insures
that 6 1s taken out only once. However, the same sort of thing
happens with other numbers like 10, 14, 15, 21, etc. In general
if an integer m = piPs > where P, and b, are primes, it will

be taken out when we sieve with Py and again when we sieve with

Py S0 that in all such cases 1in order to have the integer taken
out onlj once, we must add it back in once. A better estimate of




16
m(n) would then be an expression like

2 - 3] - [%] IR [%k] : [5252] ) [5353] R [kalpk]

Even this expression won't quite do. We must ccnsider numbers of

the form.‘plpap3 . These numbers will be sieved out 3 times; when
&é sieve by Py by' Po and by Py - Then they will be added
back 3 times when we add back the muptiples of PPy » PyP3 > and
PoP3 So these numbers haven't actually been taken out at all.

Consequently we remedy thiz situation by subtracting [———ll—— .

If we continue in this manner’ﬁgasan'take out all multiples of

every prime’once and ohly once and the number of numbers remaining
will be given by the expression . '

oo () B ) (Bl Bl o B))

(25 +[_A-]+..+[__n__-—] f (.0
([p1p2p3 P, PP Pn-2Py-1Px
- (.. ) etc.
This expression seems to go on indefinitely. However, as soon as
% <1, [%} = 0 , and the complicated expression actually has only

finitely many terms. o

We said that there were two difficulties. We have fixéd up
the one of these caused by sieving out numbers more than one time.
The other is that we have taken out all multiples of the primes,

inciuding the primes py , Po s .« -« - Py > themselves We can

correct this mistake by writing w(n) = M + m(4yn) - 1.
of course w(4/n) = k . So that the above formula becomes
m(n) =M+ k -1
The - 1 comes from the fact that 1 1s not a prime.
Let us try the formula for n = 25 . The primes £4/25 are
2, 3, and 5 . !

e - (8« () @) (8 - () - A

I -
sl 8 - 1

21
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o5 - (12 +8 +5) +(4+2+1)-0+3-1
=.9 .
Exercise 7. Compute w(150) using the formula above. T(225).
Exercise 8. PFind tne number of primes between 100 and 200 .
The formula we have obtained is an improvement over the origi-

M25)

nal method of actually sieving, but it is still very time consuming
for large values of n Mathematicians have succeeded in showing

that for very large values of n, m(n) is asyptotically equal to

n

iEEE?T—; that 1is EFLEI approaches 1 as n gets very large

n

log n

(log n is the natural logarithm of n ). This thecrem is known as
"the prime number theorem". Until 1948 the only proofs of this
theorem which were known involved some of the deepest and most dif-
ficult mathematics An elementary proof was fourd in 1948 by Atle
Selberg. However, this proof is very long and complicated and

elementary only in a technical sense.

Exercise 9. w(10,000,000) = 664,580 . Compute E;%El

log n

for n = 1G,000,000.
(HINT: log n = 3 logon , where M = 0.4342945...)
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THE EUCLIDEAN ALGORITHM AND LINEAR DIOPHATINE EQUATIONS

At some point in your mathematical experiénce, you have un-
doubtedly encountered word or story problems. Here is one taken
from the Ganita-Sara-Sangraha of Mahaviracarya, a Hindu writer of
the ninth century. "Into the bright and refreshing outskirts of a
forest which were full of numerous trees with their branches bent
down with the weight of flowers and fruits, trees such as jambu
trees, date palms, hintala trees, palmyras, punnaga trees and mango
trees -- filled with the many sounds of crowds of parrots and
cuckoos found near springs containing lotuses with bees roaming
around them -- a number of travelers entered with joy. There were
63 equal heaps of plantain fruits put together and seven single
fruits. These were divided evenly amoung 23 travelers. Tell me
now the number of fruits in each heap." If we translate the prob-
lem into ordinary algebraic language (it is a shame to do such a
thing to so beautiful a problem, but it doces help to simplify the
process of finding a solution), it looks something like this:

€3x + 7 = 23y ,
where X 1is the number of fruit in each heap and y 1is the number
each traveler receives From the nature of the problem it is clear
that only solutions in positive integers are acceptable.

The quéstion now is, how do we find solutions in integers to
such equations.

One way might be to draw a graph of the straight line
3X + by = ¢ and seé if it passes through any points with positive
integral coordinates. This particular equation does. Draw a graph
of the equation. Can you find a solution from your graph?

Suppose our flowery Hindu problem had translated into the
equation 3x + £y = 13 . Does this equation have a solution in
positive integers? Why?

Solve 3x 4+ &y =24 for x and y positive integers. Is
there more than one solution? How many are there? For what posi-
tive solution is x smallest? for which positive sclution is Yy
smallest? )

Consider the equation 2x - y = & . Find a solution with x
and y positive integers Is there more than one such solutioﬁ?

&d
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How many positive solutions are .nere?

After the last three examples, it would seem that an equation
ax + by = ¢ with a, b, and ¢ integers may have no sclutions, a
finite number of positive solutions, or an infinite number of posi-
tive solutions. Can you tell which one of these cases you have by
looking at the graph of the equation? From your consideration of
the graph of the equation try to write down conditions on the line
which will cover all possibilities for the number of positive solu-
tions.

If the numbers involved are quite large finding solutions from
a graph might be very difficult. Fortunately we can completely
solve this problem of finding integral solutions without using
graphical rethods at all. To do this we need to be able to tell
when a solution exists; and if a solution exists, we would like to
have a method (besides guessing or trial and error) which will
always lead us to a solution. Finally it would be nite if we could
devise an expression which would tell us all possible solutions in
integers for the equation. All (these) things are possible for
those who like mathematics.

First- consider the following equations:

(1) 2x + 3y =5 " (4) 4x + 6y = 9 .
(2) 2x + ay =5 (5) 4x + &y = 8
(3) 3x+3y =5 (6) 2x - 4y = 4

Which of these have integral solutions?

Look at the coefficients of x and y and the constant term
in each of the equations for which you found a solution. f% it
true that any number which divides both the coefficient of x and
the coefficient of y divides the constant term? Do you think
this must be true of any equation which has a solution? State this
result as a theorem and write out an informal proof fo:> the theorem.
(HINT: Call ¢ the greatest common divisor of a and b . Tf we
used the notation gcd(a,t) = 4 , then ged (2,4) = 2; ged (9,12)=
3 ; ged (22,3a) = a2 ; ged (ave, abe) = ab, etc  You can see that
this is a very clumsy notation. Ve might abbreviate, when it is
clear that we mean the rreatest common divisor of two integers, by
omitting the letters ged  Then (+0,74) = ¢ means ged (+0,24)= 6.

N
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Unfortunately, this notation (a,b) is used in several different
ways in various parts of mathematics. However, as we have noted
above, if a and b are integers and we write (a,b) = & for the
grgatest common divisor it isn't easily confused with the other
- uses of the symbol.)

This theorem which you have arrived at states what is called a
NECESSARY condition that the equation ax + by = ¢ have a solution
in integers. This is a reasonable use of the word necessary since
the equation cannot have a solution unless (a,b) divides ¢ . The
condition is truly necessary for a solution of the equation.

Mathematicians love to find a neat condition which 1is necessary
and which also insures that a given problem has a solution. That
is, it would be nice if two things were true -- (1) that
ax + by = ¢ has no solution unless (a,b) divides ¢ and (2)

“that if (a,b) divides ¢ , the equation always does have a solu-
tion in integers. You have met this id=a before in Chapter I where
the phrase "if and only .. ' was used. We could restate our hopeful
statement above as: The equatjon ax + by = ¢ has a solution in
integers if and only if (a,b) divides c .

Look again at our six equations above. DNoes it se%m to be
true that if (a,b) divides é, there is a solution? We shall
now try to devise a way to prove that this is always true.

How do you find the greatest common divisor of two integers?
In all the cases we have considered, it has been eas§ to do just by
looking at tre two integers. How J1id you do it-in the seventh and
eighth grades when adding fractions with different denominators?
One way of course is to write out the factors of each integer and
pick out those which are common. For instance, to find (248, 312),

we write 248 = 23 31 arnd 312 = ?3 - 3 - 13. Then clearly

(248, 312) = 8 . However, suppose the numbers are large and it
isn't easy to find the factors of either number Jor example,
suppose we are asxed to find (732, 3315) . The usual method works
of course, r.t is nol as easy as in the cases we have previously
encountered. Another method which solves this proble:r. is attributed
to Euclid (wno lived arcout 200 ®.C.).

b
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It goes like this:

3315 = 782-4 + 187
782 = 1874 + 34

187 = 345 +(Q7)

34 =172 + O
Euclid's method (or algorithm) gives 17 , the last non-zero re-
mainder, as the greatest common divisor of 3315 ana 782. That
17 1is the greatest common divisor cuan be proved as follows. First,
proceeding from the bottom to the top, we can see that 17 divides
each number on the left hand side as follows:

- 34 = 172
187 = 17 (2-5 + 1)
/ T82 = =17 {(2-5 + 1) 4 + 2]}

17 (25 + 1) 4 + 172
3315 = 17 {((2:5 + 1) - « + 2} 4 + 17 (2-5 + 1)

17 (((2:5 +1) - 4 +2)-4 + (25 + 1))
Thus we have shown that 17 1is a divisor of both 3315 and 782 .
. It is, then, a common divisor.

Now let us show vhat it is the greatest common divisor. We
do this by showing that any number d* which divides both 3315
and 782 must divide 17 . Then if an integer divides i7 , it
cannot exceed 17 . Hence 17 must be the greatest common divisor.
To prove this we simply reverse the process of the preceding para- >
graph. Suppose d* divides 3315 and 782 ; then it must divide
3315 - 782-4 = 187 . Vhy? Next if d* divides 782 and 187 ,
it divides 782 - 187-4 = 34 . But then if d* divides 187 and
34 , it divides 187 - 3«-5 = 17 . So we see that any number which
divides both 3315 and 782 must divide 17 . Therefore 17
must be the greatest common divisor of these two numbers.

~!

You may have noticed that we have used repeatedly a very
obvious fact, namely, that if an integer divides each of two
integers, it divides their sur .ad their difference. This 1s a
trivial but extremely usefiLl taeorem. Write out a proof for this
theorem giving reasons for each step.

Suprose we try Evclidt's methot on 252 and 127.

13N
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253 = 122:2 + 9
122 = 9°13 + 5

. 9 = 5-1 4 4
5 = 4-1 —é@
4 = 1-4 + 0

The greatest common divisor is 1 , the last nontzero remainder.
Such numbers which havev 1 for their greatest common divisor are
called relatibely prime. Check that (253, 122) = 1 by factoring
the two numbers.

Find the g.c.d. of 1596 and 96 . Find (%18,.1376);
(365, 146) .

To prove that Euclid's method always gives us the greatest

_common divisor for any two integers a and b , we can proceed as’
follows:
. (Suppose a > b.)
a = b-q1 + ry

b = rytd, + Ty

1 = T2'd3 7 T3
r, = r3-q4 +r, ' -

= . + r where 1r is the
r Th-1"9n n’ n v

n-2
last non-zero remainder. (Is it clear that there will always be a
last non-zero remainder? Why?) To show that T is the greatest

.common divisor, we must show that rn is a commor: divisor; that is,

that it divides both a and b . This is left to the reader. He
can argue in exactly the same way that we did in the first example
with 17 , 3315 , and 782 . Then we must show that any common
divisor of a and b divides r, - The argument again is the

same as in the example.

Vie now have a fool-proof method for obtaining the greatest
common divisor of any two integers. Actually we have done a good
bit more. Not only can we find d = (a,b), but we get as a bonus
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a solution to the eduation ax + by = d . In the case of 17,
3315, and 782 we are in a position to solve the equation
3315x + 782y = 17 . The solution is as follows:

Euclidean Algorithm Solution of 3315x + 782y = 17
3315 = 782-4 + 187 187 = 3315 - 7824 .
782 = 15;»4 + 34 34 = 782 - 1874 '
5 . ‘ = 782 - (3315 - 782-4)4
= 782 (1 + 4-4) - 3315 (4)
187 = 34°5 + 17 17 = 187 - 34-5
= (3315 - 782-4) - (782(1 + 4-4) -
3315(4)1-5

3315 (1 + 4°5) - 782 {4 + %4-4)5] |
. 3315. (21) - 782 (89)
So that if we set x =21 and y = -89 we have a solution to the
original equation.

You will remember that in the beginning of this discussion we

were trying to find solutions in integers to equations of the form
ax + by = ¢ . We found that in order for the equation to have a
solution at all, (a,b) = d had to divide c¢ . The claim was made
that if this happened, there was always a solution in integers for
the equation. We are now in a position to show that this is true.
Suppose you stop reading at this ﬁoint and try to find out how to
get-a solution from what we have done so far. '

Check your method with *he fecllowing. Irom our discussion
above of Euclid's )
algoritim, it is clear that we can always solve ax + by = d where
d = (a,b). To find a solution of the original equation let
¢ = d-c' . Now take the equation ax + by = d and multiply both
sides by c! Vie get

a(xe') + b(yec') = det = ¢ .

It is clear then that xc¢' and yc' are solutions to our problém.

This is rezlly a nice result. We have a method for finding a
solution to any equation which hes a solution.

There is _ust one thing -- the solution we get may not be in
positive integefs x and y . Of course there may not be any

solutions in positive integers, but in our "beautiful forest"

problem, clearly only positive solutions are acceptable. While it

= e
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is wonderfﬁl always to be able to get one solution, a real mathe-
matician, at this point, would certainly wonder "Isn't there some
way to find all the solutions?". Try to £ind a way to find another
solution from the one obtained by Euclid's algorithm. Can you now
. find all solutions?
(HINT: Suppose x, and y ' satisfy the equation, i.e.,

ax, +‘byo = ¢ = and suppose. X and y are any other pair of

numbers which satisfy it, so that ax + by = ¢ . Then subtract
the first equation from the secoqd, dividg both sides of the
‘resulting equation by d , transpose, try to see what can be said
about (x - xo) and (y - yo).)

When you have made as much as you can out of the "hint",
check your results with the reasoning in the answer sheet. You
will find there that the general solution may be given in the form

= b
X = xo + 3 t

y =V, - % t where t 1is an integer ¢t .

.It is easy to check that for any integer t the x and y given
above do satisfy the equation provided X, and Yo do. Check

this for yourself. It is clear from this check that this x and
y will satisfy the equation for any value'of t . Is it also
clear that any solution must have this form for some integer t ?
‘Try to show that this is true. ‘

We are now in a position to find all the positive solutions
for our original equation if any exist. Let us take the equation
3315x + 782y = 17 again. By our method we get the solution
x =21 and y = -89 . Are there any positive solutions? Well if
we look at the general solution obtainéd above, for thils equation
it assumes the ‘form x =21 + 46 t , y = -69 - 195t . To find
positive solutions we must have t which satisfies x = 21 + 46t
‘>0 and y = -89 - 195t > O . However, if t satisfies both of
these inequalities it must be an integer. > -21/46 and at the same
time < -89/195 . There is no integer satisfying both of these at
the same time.
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(Plot these 2 numbers on the real line énd look for the integers
to the right of -21/46 which are also to the left of -89/195.)
Consequéntly there are no positive solutions. Of course in this
particular problem this is clear from looking at the equation.

However, the method we have used will lead you to the values of t

which give all positive solutions in any other broblem.

Now you are in a position to find out the number of fruits in
each heap in our original problem, Go to it. ‘ ’

What is the smallest number c¢f fruit there could have been in
each heap? Are there infinitely many positive solutions? Write
out the general formula for all solutions. ‘

Here are a few more problems which you can solve using the
methods of this unit.

1. 16x + Ty = 601.

2. Find the positive solutions for the equation 101x + 753y =

100,000. .
Say quickly, mathematician, what is the smallest nultiplier
by which 221 being multiplied and 65 added to the
' product the sum divided by 195 becomes exhausted?
(From the Lilavati of Bhaskara (1150 A.D.).)
In the forest 37 heaps of wood apples were seen by the

travelers. After 17 fruits were removed, the remainder
was divided evenly among 79 persons. What is the chare
obtained by each? (Mahaviracarya)

14x - 45y =11 .

40ox - 63y = 135 .
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THE GAUSSIAN INTEGERS

In order to be able to find solutions to all quadratic equa-

tlons ax2 + bx + ¢c =0 where a, b, and ¢ are real numbers, we
found 1t necessary to extend our number system to .nclude numbers
whose squares are negative. 1In fact, if we adjoin to the set of
\real numbers a numbep with the property that.ifs square is -1 ,
define addition and multiplication for thls extended set, we
achieve a new number system in which every quadratic equation

(or more generally every polynomial equation) with coefficients
in the new system has solutions. ‘

This extension of our number system consists of the set of
all numbers of the form a + bi where a and b are real num-
bers and 1 is a number with the- property that i2 = -1 ., This
new system is called the field of complex numbers. Most of our
work in mathematics in grades one through eight is arithmetic.

Let us now investigate arithmetic in the complex number system,

In ordinary arithmetic we were mainly concerned with the bositive
integers. The question naturally arises "What are the integers of
our new extended number system?" To try to devise a reasonable
definition, we try to generalize some property of the ordinary
integers in the system of rational numbers so that these "rational
integers" will still be "integers" in the extended systém, and so
that as many changcteristics of the ordinary rational integers as
possible will be retained.

In keeping with our interest in solving equations, the property
of the rational integers that we choose to generalize is the prop-
erty that they are solutions of linear equations, x +a =0 ,
with rational integral coefficients. For our purpose it is con-
venient to restrict our attention to a subset of the complex num-
bers, namely the set of numbers f{a + bi} where a and b are
rational. Ve then define Gaussian integers to be those complex
numbers a + bl , a and b rational, which satisfy an equation

cf the form 22 + mz +n=0 where m and n are ordinary

I 1




These new integers are called Gaussian integers

rational integers.
in honor of Carl Frederich Gauss (1777—1855) the German mathemati-

cian who is ranked with Archimedes and Newton as one of ‘the three
greatest mathematicians of all time. Gauss was the first person

to systematically develop the properties of these new integers,
and, in particular to show that the Fundamental Theorem of Arith-

netic (Every integer can be written as the product of primes and in

essentially only one way.) holds for these integersi— - — - "

Suppose we now consider the form which the new Gaussian inte-
gers must have. We remember that the definition requires that they
be numbers of the form a + bi , a and b rational, which

satisfy an equation z2 +mz+n=0, m and n ordinary ration-

al integers. If b =0 , the Gaussian integer is a rational number

a = g . Suppose that g has been reduced to that p and q are

rational integers with no cg%mon factors. Thence sinte a =_§
satisfies z? + mz + ﬁi= o, we have |
Eg,+ m o+ n =0
q q
p2 + mpq + ngg =0
p° = -q(mp + nq) .
q then divides p2 . But since p and q have no cdhmon factors,.

q must divide p and q must actually be 1 . (If not q 1is a
common factor of q and p .) But if q =1 , then a is actual-
1y a rational integer.

_ There remains the case when b # 0 . In this case! from the
quadratic formula we have that if a + bl is a root then a - bi

is also.
Accordingly

(z - (a +bi) (z - (& - bi)) =2° +mz +n

22 - 2ac + a2 + b2 z2 + mz + n




(1) a

(2) b =

Since b 1is rational

(3) “4n - m® = ¢° , where c¢ 1is some rational integer.

Substituting (3) in (2) we have
(3) b=gc.
2

The equation (3) can be written 4n =lm2 + 02 .

This means that m and c¢ are either both even or both odd.
They cannot both be odd. L

Exércise 1. ‘

Prove that the sum of the square of two odd numbers is not a
multiple of 4

Therefore both m and ¢ are even and a and b are rational
integérs. '

We have then in both cases that a -and b must be rational
integers and we are now able to say that the Gaussian integers are
complex numbers of the form a + bi where a and b are actually
rational integers.

It is easy to check that the sum, difference, and product of
two Gaussian integers is a Gaussian integer.

Exercise 2.

Show that the sum, difference, and product of two Gaussian
integers is a Gaussian integer. ‘

We see then that our new integers behave at least in thesg
respects like ordinary rational integers. When we come to division
we must look a littie more closely.

Exercise 3.

Is the quotient of two rational integers a rétional integer?
Justify your answer. )

Exercise 4.

Is the quotient of two Gaussian integers a Gausslan integer?
Justify your answer.
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The previous exercise shows us that division is not always

possible in the set of Gaussian integers. Let us then define
division for Gaussian integers precisely. We say that the Gaussian
integer oA is divisible by the Gaussian integer ﬁ? if there is a
Gaussian integer ¥ such that & = [3 Y

Example 1.

Is 2 4+ 31 divisible by 1 + 1 ?

SOLUTION:

If 2 + 31 1s divisible by 1 + i , then there must be a
Gaussian integer x + yi1 such that

(1 +i)(x +yi) =2 + 31 .

Then (x -y) + (x+y)i=2+ 31 ,and
x"'y=2’ *
N X+y=3.
S 1
x:%,y:E’,

xSince these are the only possible values for x and y 1if

X + yi satisfies the original equation, and since these are not
rational integers, our answer is "No, 2 + 31 is not divisible
by 1 1M '

Exercise 5.

Is 2 + 31 divisible by 2 - 31 ? by i ?

Exercise 6.

Is 3 + 111 divisible by 2 + 31 2 by -1 ?

We have seen that the conjugate, a - bi , of the compléx
number, a + bi , is useful in many questions concerning complex
numbers. We use the conjugate to define the norm of a complex
integer. The norm of a + bi 1is defined as (a + bi)(a - bi) =
a2 + b2 . We immediately notice several things about the norm of
a complex integer. In the first place, it is a rational integer .
since a and b are. In the second place it 1s non-negative.
If b =0, the norn of the rational integer a 1is a2 . These
properties prove very uséful in trying to settle many questions
about Gaussian integers.

If we look into the divisibility properties of the Gaussian

integers, we are led to consider the integers which correspond to

3¢
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*'1- and -1 among the rational integers; 1 and -] are the only

rational integers which divide every rational integer. We call
these rumbers the units of the system of rational integers.
Similarly we define units for the Gaussian integers to be those
Gaussian integers which divide every Gaussian integer. We can
determine the units for the Gaussian *ntegers quite easily by
first using our new notion of the norm.
_ We first need the preliminary theorem or

Lemma. N(O\ﬁ) = N(«t ) N(3) , where N(® ) denotes the norm
of ok _

Proof: If we let O be the conjugate of o and (3 be the
conjugate of [3

N(S* ) = o
NB)=BA_ L
N(«f3) = &f3 °‘f3 Since olﬂ =x-f3
= d/?otﬁL
=(2&) (B A3)
- N(e )N(A)

The lemma can also be proved directly from the definit;on of
the norm. Let & =a +bi , 3 =c + di and write out the details
of this proof.

It is now easy to show

Theorem 1. u is a unit if and only if N(u) =

Proqf: If v 1s a unit, it divides every integer and in
particular the integer 1 ‘
Then 1 = u-v for.some Gaussian integer v .-

"By the lemma, N(1) = N(u)N(v)

But . N(1) = 1 = N(u)N(v) . Since the norm of any integer is a
positive rational integer N(u) = N(v) =1 and the "if" part of
the theorem is-proved. ¢

Now suppose N(u) = 1.
Iet u=e + £f1 . Then e2 + f2 =1 and either e =0 and
f =+1 or
& f + 0 and
e =+ 1

Hence if N(u) , u=1, -1,1, -1 . But 1 and -1 clearly
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divide any Gaussian integer a + bi . Also a + bi = i(b - ai)
and a - bi = i(-b + ai) . Hence these four integers divide every
Gaussian integer and are therefore units.

P

q.e.d.
We have as a bonus from this theorem, the
Corollary: fThe units of the Gaussian integers are 1 , -1 ,

|
|
i1, and -1 .~ .
When finding the divisors of a rational integer n , it is 1
only necessary to consider positive divisor: of positive integers i
n , since for any g}visor d of n, -4 1s always a divisor of {
n . Similarly if n 1is negative whenever 4 *divides n so does
-4 . We Eould describe this situation by saying that n and -n
are associates; 1i.e,, the assocliates of an integer n are integers
obtained by multiplying n by units. In the case of rational
integers n has only the assoclates n and -n . If we extend :
the associates of X to be the Gaussian integers obtained From 1%
by multiplying & by units. Thus the associates of any Gaussian
integer &X are. A , -of , 1&X , and -1dA
If we now consider the divisors of a Gaussian intéger, X _,
we need only concern ourselves with divisors which are not units
or associates of X
Exercise 7.

Show that if & and ﬂ are associates their norms are equal.

i

We are now able to define a Gaussian poime as a Gaussian in-
teger which 1s not a unit and which has no aivisors except units
and its associates. Several interesting questions can now be asked.

1. Are rational primes Gaussian primes? ~

2. Are there infinitely many Gaussian primes?

3. VWhich rational integers are Gaussian primes?

We can answer the first without much trouble. 2 is a ration-
al prime. However 2 = (1 + 1)(1 - 1) . Since 1 + 1 and 1 - 1
have norm 2 , they are not units. The associates of 2 are 2 , ¢
-2 , 21 , and -2i . Therefore since 1 + 1 and 1 - 1 are
neither units nor associat&séf 2 , the rational prime 2 1is not
a Gaussian prine,
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Exercise 8.

Is 5 a Gaussian prime?

Exercise 9. : |

Is 3 =a Gaussian prime?

Let us now look more closely at rational primes of the form
%n + 3 . Suppose a rational prime p=4n+3=afB | Then
N(p) = N(«x )N(B ) = p2 . If p 15"not a Gaussian prime, then
there must exist ® and 3 such that N( & ) A 1 and N( ) #1.
In that case, N(« ) =p and N(f3 ) =p . But if =X + yi
N(x) = x° + y2 =p =4 + 3. This is impossible for no integer
of the form 4n + 3 4is the sum of two squares.

Exercise 10. A

Prove that no rational integer of the form 4n + 3 1is the
sum of two squares by considering all possible cases for x and
¥y (both even, both odd, one even and one odd).

Since the norm of & and (3 cannot be p , the norm of one of
them must be 1 and that one is a unit, and the other is an'asso-
ciate of p . Since p has no divisors except units and associ-
ates ¢f p , we have proved the following theorem.

Theorem 2. Every rational-prime of the form 4n + 3 is a .
Gaussian prime. e

>

This proves also that there are infinitely many Gaussian
primes, since in the supplement Prime Numbers it is proved that
there are infinitely many rational primes of the form bn + 3 .,

And we have thus answered question two in the affirmative.
Exercise 11.

Is 1+ 1 a Gaussian prime?
Exercise 12.

Is 1 -1 a Gaussian prime?
Exercise 13.

Is any composite rational integer a Gaussian Prime?
From the preceding discussion and exercises, we have the re-
sult that the only rational integers which are Gaussian primes are

rational primes of the form 4n + 3 and possibly some rational
primes of the form 4n + 1 .
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To settle the question about the existence of rational primes
of the form 4n + 1 which might also be Gaussian primes we need

two results. The first is a theorem which 1is rather easy to prove.
Theorem 3. If N(o ) is a rational prime, & is’a Gaussian

prime. ,

Proof: Suppose * = /33'
Then N(e) = N((3 )N(
By hypothesis N(x ) = ((3 )N(a' ) =p, where p 1is a

rational prime.
Since N(B ) and N(¥ ) are rational integers, one of these is
1 and the other is p . The one whose norm is 1 1is a unit and
we have the result that & can only be written as a unit times an
associate of & . Therefore o 1is a Gaussian'prime.
q.e.qd.

The other result which we need is that any rational prime of
the form 4n + 1 1is the sum of two squares.

Exercise 14.

Write the following rational primes as the sum of two squares.
(a) 5, (b) 13, (c) 17, (d) 29, (e) 101 , (£f) 1721 .

Since the proof of this result requires more machinery from
the theory of numbers than we have available, we will not give the

&

proof here. (A proof can be found in any elementary number theory
book.") ) .
We are now in a position to settle the question about rational

primes of the form 4n + 1 . Suppose p = n + 1 = 12 + y2 . Ve

can factor p as follows:

2 2
p=x"+y =(x+yi)lx - yi)

Then the Gaussian integers x + yl1 and x -yl have norm p and
by Theorem 3 are Gaussian primes. Since the norm of p 1is p2
and the norm of x + yi and x - yi is p , by Exercise 7 the
primes x + yi and x - yi are not assoclates of p . Then p
is the product of primes, which are not assoclates of p . Ve have

2

therefore proved
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Theorem 5. No rational prime of the form 4n + 1 1is a

Gaussian prime.
The answer to question three, then is: The only. rational

integers which are Gaussian primes are the rational primes of the

form 4n + 3 .
Actually, it can be shown that the Gaussian primes are of

thrée kinds:
B (1) rational primes of the form 4n + 3 and their
associates, '
(2) 1 +41, 1 -1 and their associates,

(3) integers of the form x + y1 and x - yi1 where x and

y are positive, x 1s even and x2 + y2 1s a rational

prime, and their associlates.¥*

*A linen manufacturing company: N. W. Linnenfabrieken, E. J. E.
van Dissel and Zonen, P.0. Box 272, Eindhoven, Holland, makes a
tablecloth 23" x 28" in which the Gaussian primes form the woven
design. It is available in red, green, blue, and yellow at $2.00

each.
-
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6.

FERMAT'S METHOD OF INFINITE DESCENT

The theory of numbers (the study of properties of thé positive
integers) is a fascinating and difficult branch of mathematics.
The French provincial government official and amateur mathemati-
cian Pierre Fermat (16012-1665) devoted much of his leisure time
to systematically cultivating this branch of mathematice.

One of the baffling asbects of number theory is the absence
of many general methods for attacking problems in this field.
Fermat devised an ingenious method which he called "the method of
infinite descent” to handle certain kinds of problems. It is some-
what like mathematical induction in reverse. Instead of showing
that a certain proposition, P(n) , is true for n =1 , and when-
ever P(k) is-true, P(k+l) is also, we begin at the other end.
Wle first suppose that P(n) 1is true for some integer. We then
show that if it is true for any particular integer, it 1s true for
a smaller one. Since on the one hand this argument can be repeated
indefinitely and on the other hand there are only finitely many
positive integers less than a given positive integer, we have a
contradiction. This means that our assumption that the proposi-

tion is true for some integer is wrong, and we have the result that

the proposition is not true for any integer. In this form it would
seem to be especially useful for disproving theorems.

The argument can be modified, however, to prove positive
statements. Fermat said that . used it to prove that any prime
of the form 4n + 1 can be written as the sum of two squares. For

o]
instance 5 =22 + 12, 13 =22 + 32 , 17 = 4% + 12, 29 = 2% 4 5°

Exercise 1.
Write 37, 41 89, 101 as the sum of two squares. Can this be
done in more than one way?
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Fermat's argument goes as follows. Supbose an arbitrarily chosen
prime, ) =4n + 1 , is not the sum of two squares. He then shows
that there is a smaller prime of this form which is not the sum of
twp squares. Continuing in this way he arrives at the result that
5 1is notxthe sum of two sqQuares. But 5 = 22 + l2 . This con-
tradiction means that there was no prime of the form bn + 1 which
was not ‘the sum of two squares. We do not have Fermat's proof of
this theorem and in fact it was not until 1749 that the first
rigorous proof was given by the Swiss mathematician Leonard Euler
(1707~ 1783).

Fermat discovered many deep and lnteresting properties of the
integers. Very few of his proofs have come down to us; however,
his method of infinite descent can be used to prove a special case
of one of the most famous theorems in mathematics, Fermat's Last
Theorem. In a margin of Bachet's Diophantus, Fermat made his
famous note regarding the problem of finding rational solutions of
the equation - ‘ .

(1) X+ 3% = 2

—

"On. the contrary, it is 1mpossiple to separate a cube into two
cubes, a fourth power into two fourth powers, or, generally, any
power above the second into two powers of the same de:§ee: I have
discovered a truly marvellous demonstration which this margin is
too narrow to contain." Mathematician$ are uncertain as to whether
Fermat actually had a proof; however, no proof for all powqrs
greater than 2 has yet been‘found.

The equatiocn x2 + y2 = z'2 . of course, does have solutions;

for instance 2 4 42 52 . In fact we now obtain all solutions
for this case as follows. We first note that we need only look for

solutions x , ¥y , and z which have no common factors, since if

2 2 2
x“ + v° = 2 , then certainly (kx)2 + (ky)2 = (kz)2 , and converse-

ly. .

Exercise 2.

Show that if any tw~ of the integers x , ¥y , and z in (1)
have a common divisor, d , then- d divides the thirad.
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Accordingly we will consider only solutions which have no
common factors. In this situation not all three integers x , ¥y ,

and z can be even. Why not?

Exercise 3. .

Show that not all three integers X,V and z in (1) can
pe odd.

Exercise 4.

Show that 1t is impossible for two of the integers x , ¥y ,
and z in (1) to be even and one of them odd.

The preceding exercises show that the oniy possibility for a
solution to (1) is for one of the integers to be even and the
other two to be odd. Suppose x 1is even and y and 2z are odd.

Let -~
(2) . X =2u . Then (1) becomes
(3) 4u + y2 = 2° or
e - 22 - 42
(4) W = (z +y)(z - y) .

Since z and y arec odd, 2z +y and z -y are even. If we
consider any common divisor of z +y and 2z -y , it must divide
their sum, 2z , and their difference, 2y . We know that 2 1is a
commor. divisor, but if there were any other besides 2 , it would
have to divide both z and y . However, we excluded this case
in the beginning.

At this point we must pause to prove

Theorem 1. If the greatest common divisor of a and b 1is

and ab = ¢ , then a 1is a square and b 1is a équare.
Proof: By the Fundamental Theorem of Arithmetic (see the

supplement entitled The Fundamental Theorem of Arithmetic), we may

write ¢ as the product of prime factors P : Po 5 - - - P

\

Then e

n

2 2

¢® = (pypy-..p,)" = ab

Clearly P, divides ab . If 12 divides a 1t does not divide
2

b since a an1l b have no common factors. In this case p,

must then divide a . If Py does not divide a , then 1t must

b -
~




v,
o

4o
divide b and similarly in this case p-. will divide b . We
- e -d

can make the same argument for each prime_ Py ." Hence 1f any prime

divides a , so does its square; and this prime does not divide b.

The same statement can bé made for b . Accordingly, if we let
Py bé the first prime that divides a2, Py N be the second, etc.;
1 2
Py be the first prime that divides b, Py be the second,
k+1 . k+2 ,
etc.; we nmust have T
2 2 2 2
a=p; 05 ...p; = (py Py -+-Py )
Tyt Ty 787y
2
. 2 2 2
b=p p ...p5 =(p. D ...D: )
el k2 Ty e e Thn
( g.e.d.
We now retu?n to our problem of finding the solutions to the
equation x2 + y2 = 22 . Since the greatesticommon divisor of

z+y and z -y is 2 , we can write (4) in the form

p? =y 2LLEST - hzy

where the greatest common divisor of 2 and Y 1is 1.

Then u2 = Z*Y and by theorem 1
Z = v2 and y = w2 and

(5) z +y = ov?

(6) z -y = 2wl

Exercise 5.
Show that v. and w have no common factors.
Then substituting (5) and (6) in (%) we have

i = (2v2) (2w2) or

u2 = v2w2 and
(7) ’ U o= Vew
Substituting (7) in (2) we have
(8) . X = 2vw ,

Poj-




(9)

3 ((5) + (5)) egives

(10) z = + wl

Since y and 2z are both odd, one of v and w 1is even and the
other odd.
In the beginning we supposed that x, y , and 2z were any solu-
tion without common lactor- and we have found the form which they
must assume.
We have then

.Theorem 2. The solutions of 2 are given by

y

z = ~
where k 1s any integer and v and w are any integers chosen
so that they have no common factor and so that one is even and the

other odd.
Fermat's Last Theorem can be stated as follows: There are no

integers x, y , and z for which "+ yn =27 if n is

greater than 2 . The proof for the special case n ='4 serves
as a good.illustration of Fermat's method of infinite descent.
Theorem 3. There is no solution in integers for

X4 -+ y4 = zi+ . As above, if the equation has a solution x , y, z
and any pair of these integers has a common factor, that common
factor then divides the third integer and both sides of the equa-
tion can oe divided by the fourth power of that common factor. So
if there is a solution, we can assume that the x, y, and 2z are
relatively _rime in pairs; that is, every pair has greatest common
divisor 1

. . A 4 4 2
Vie also notice that if we can show that x +y = 2z is

. . , : 4 4 ‘ . ) .
impossible then so is x + ¥ = 2z  , since if the sum of two

fourth powers lsn't a square, it certainly can't be a fourth power.

. . 4 4
We therefore prove the sirpler statement that x' + v = z

has no solution in lInterers. The proof by infinite desce.t follows.
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Proof: Suppose there is a solution X , ¥ and z relative-"

ly prime in pairs, say ‘xu + y4 = zz'. This equation can be

rewritten
2,2 232 2
(x°)° + (y°)° = (2)° .
However from Theorem 2 we know that

x¢ 2 oab ,
(11) % = a° - e,
22 = a2 + b2 3

for scme integefs a and b with greatest common divisor 1 and
one of these even and the other odd. Suppose that b 1is even.

Sinde x° = 2ab = a(2b) and a and b have no common factors,
by Theorem 1, 2b 1is a square and a 1s a square. Set

(12) b = .02 ,
a = d2
" 2 2 2. Y
From (11) we have that a° = b + y~’, and again by Theorem 2
b = 2rs , T -
2 z
(13) y =r° -8, .

: a = r2 + 32 ; where r and s have no
common factor. But from (12) and (13) we have

2b = 02 = 4rs .

<

By Theorém 1, then r = xi ,
\
8 = xi + yi and since by (12) a = 42 ,
we have . xi + yi = d2 , where 1 <d<a<z.

But now we have a solution x, y , 4 to the equation

x)1L + y4 = 22 in which d 1is less than 2z . What we have actually

i

shown 1is that if x} + y4 = 22 has a solution we can always find
another solution with smaller 2z . Buit this is impossible since
there are only finitely meny positive integers less than a given

integer 2z . Therefore there is no solution to x4 + y4 = 22 and

A
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consequently no solution to x4 + y}1L = z4 -

Fermat also used this method of proof to show that if both ofi
the legs of a right triangle are integers, the area cannot be a

square. The proof of this statement is similar to the one given
above. . ,
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7.

°

APPROXIMATIONS OF IRRATIONALS BY RATIONALS

In Chapter 1 of your text you learned that a real number can
be represented by an infinite decimal. The main features of this
representation are the fcllowing: )

Let the real number be g + & , where g 1is an integer and
O AL . Sinée the integral part g offers no difficulties,
we gan consider only o and write it as a decimal: A = O.ala2a3...

. « .

(1) Each decimal section is a rational number. ¢(By the nth
decimal section of the decimal O.ala2a3..., we mean the number

R 2 n :
0.aja5... a, , 1l.e., a;//ﬁo + a%//io + ...an//ﬁq . )

(2) The difference | & - 0.a;a5-.. anl can be made as

e e O

small as we please if we choose n large enough.
~ -n
(3) o -0.aja5...2, < 10

(4) The denominator of each decimal section is a power of

10 .
You may not have noticed property (3) before. It is easily )
proveagd, foy A - O.ala2...an = O°Q—L;;_9 a LR aR
n
< 0.0...099 ... =0.0 ... 01 . (The numbers under the braces
< ¢ A - |
n n-

indicate the number of O!s .) Of course, (2) is a consequence of
(3).

Properties (2) and (4) seem to be rather special; they arise

.’””’——Trom the fact that we are using decimal sections to approximate o .

There seems to be no particular reason to do this, and in fact we
might get better approximations if we used general rational numbers
p/q as approximations.

Before doing this, however, let us realize that there is no

particular point in approximating rationals by other rationals.
, From now on we shall assume that & , the number being approxi-
mated, is irrational.

[Py
-
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) It is very easy to produce rational numbers p/q ‘for which
" |eA-p/al < 1/a . Suppose A 1lies between the consecutive

integers m and m+l . Let q Dbe any integer > 1 , and divide

the interval (m , m+l) on the number line into q parts or sub-
,intervals (see figure) . Each part

®jp
s ‘ . 3
b

is of length %_; the points of subdivision are then

m + x s, - +_§ s seey M A4 g1 . The point which represents &

q q q
will fall inside one of the subintervals; it cannot fall on an end-

* point of a subinterval since & is irrational whereas the end-
points are rational. If oK. falls in the §ubinterva1 whose left
endpoint is m + i/q , then clearly /

ko

i1+1
q ’

m+1i/g< A < m+
(m + 3/q)] < 1/q , or
bl 1
Q‘<’d’

so that | &

(1) | «

where p =qgm + 1 . ’Since-this.process can be carried out nomatter
what integer q may be (as long as q » 1) , we have proved this

result.
Theorem: If © is irrational, then to every integer g > 1
thére corresponds an integer p such that (1) is tyue.

Let us chezk this result with some famous approximations of
T = 3.14159265... which were known to the Greeks, namely 22/7 ,
333/106 , 355/113 .




_ofq X -pAl @ _14q _-

, 22/7 .00126. .. 1429, .. .
333/106 .0000832. .. .009434 . ..
355/113 .000000266. .. .008850. . .

.

These approximations are considerably better than what would

'be expected from the Theorem! Is a better result than (1) pos-

sible? . . ] : a
Belfore trying for a better reéult, let us spend a few words

trying to make the whole concept of approximation more precise.

If o is the number being approximated and p/q 1is the approxi-

mation, then certainly we want.to make | & - p/q| "small". But

small - dompared to what? Ve can make [c& - p/q] as small as

we please provided we can take q large enough, as Theorem 1

shows. If we want to have | & - p/q| < 0.001 , we have only to

choose q’> 1000 . 1In othér words, we can make | & - p/q| small “”

but we pay for it by having to use a large denominator q . This

suggests that we might try for a result in which o 1s still

approximated by p/q but the denominator of the right member of

(1) is larger than q . 4

To get such a result, we shall introduce a completely obvious /

but very important principle:

THE BOX PRINCIPLE. If n + 1 objects'are placed in- n boxes,
there is a box which contains at least_two objects.

Even though this theorem is so obvious, give a formai proof of it.
You probably feel that nothing of any importance could possi-
bly come out of anything that sounds so trivial as the Box Princi-
ple, but wait! Let n bve any positive integer. Divide the
intervai O ... 1 into n equal subintervals; these will be our
n “"boxes". ‘
Now for each integer [ in the range 1< j<n+1, let pj

I -

— *
beﬂzab greatest intezer less than joK , that is,
O jHr - pJ'< 1, ot 1, 2, ..., n+ 1

(Note that j*X - p. cannot be either 0 or { , for jok - p,
. o J

is irrational.) Consider the n + 1 numbers

44
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they all lie between O’and 1 and so are distributed among our n
boxes. Hence, according to the Box Principle, there must be two

of them, say r X - Pn > SA - Py which lie in the same box.
If this box is the subinterval j‘/n oo (& +1)/n, we have
%f< rot - pp < iL%;L'
’ %'< 8 - P < : ; -

The second inequality may be written

rrl g ¢ .
- £ -s ok +ps<—n.

Adding the first and last inequalities, we get

(2)  -l/n & (r-s)* -(pe-pg) </n .
Since r and s are both integers between 1 and n + .
but are not equal, we see that Ir - s! is between 1 and n ;
1<|r-8<n. Set gq=r-s or 8 -7T, whichever is posi-

tive; p = p, - P, - Pg if r-8>0, p=pg-Pp, if

A

r-s<0. Théf™ < q<n, and (2) becomes -1/n < gk -

p<l/m,or g -pl<1l/n. =
Hence,

X _ R s
(3) l* q‘<nq

This gives us the thecrem:
Theorem. For each irrational number & an¢ each positive

integer n , there is a rational number p/q . 'suc.. that

Rl L .
() |°( Cll <tqg °
with 1 £ gSn el

Of course, (4) is considerably better than (1), simply
because 1/nq is considerably smaller than 1/q when n 1s large.
We can obtain a more useful form of (4) by noting that, since

n>q, nq Z_q2 , so that N
| * -p/a | < 1/nq < 1/@®, or

(5) ‘o&—gl<—z—2-
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S0 far we have shown the existence of only one rational
approximation p/a with the property (5). Actually, there are
1nfinitely y such rational approximations, as we now sho
Choose an integer n! < n and find, by the last theoren, a?
rational p!q! such that

‘ | ® - p'qt]| < 1/n'q' , with 1 < §! < nt
Now A - p/q 1is not zero, so there must be &n integer t for
wﬁich
(6) | & - p/al > 1/t
We shall increase t ,-if necessary, to make t > n (this only
strengthens the inequality (6)); then'we can use t for the n!
above. )

So now we have the following'

i [« -2>% [ -5
This shows that p/q is not the same as p!'/q! , since the first
is: further from & than 1/n , whereas the second is nearer to
than 1/n . That is, pt/a' is nearer to & than p/q is.

Thus, p!'/a' 1is a new approximation to &% , and moreover,

1
| d %-I n Q' < q!2

<—T—r_<. <"

so that (q) is satisfied. Now starting with p'/q! we could
produce a still better approximation p'!/q!'! to K which also
satisfies (5). We can continue this process indefinitely. This
nroves the following theorem:

Theorem: For each irrational number A there are infinitely

many different rational numbers piqi , 1=1, 2, 3, ... for which
p.
1 1

(7) - = < =5
ai 2

i . L

Can we do better even than (7)? Is it true, for instance,
that there are infinitely many different p/q for which

| &« - p/al < l/q3 ? There are infinitely many irrationals <& for
which the last inequality holds, but there are also infinitely
many X for which it does not.
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Vie shall give an example., Let X =4/2 . Suppose we wish
to approximate /2 by a rational number p/q .

Case I. p/q <4/2 . Ve have 92q > p , and

292 - p2 = (q VZ - p) (aVZ +p) 21,

because 2 qa - p2 is a positive Integer and so is at least 1 .,

Hence, remembering that p/q<4/2 and 42 < 1.%42 , -
we get
a Y2 - p 2 ='_l_>‘1_“:

1 1
>
ave +p a V2 =q V2 2 /2 q 4q

and-sirce q > 0,

vE o= Vg

4 g 2’
Case II. p/a > 2 . Since 4/2< 1.42,

. 1 1
l’\ﬂ—-gl>0»58>1;_>. o
~ . q

s;pce a>l.

-

Case III. 4/ < p/a <2 . Then p> > 2q° and p>- 2q° =
(p-rav/2) (p+aV2) 21,

or
v -8l2 2 v
q

1
. 7
B+ gz a© 2+ 4F A

There are no more cases, for 4/2 # p/a . (Why?)
In all cases, then, we have:

If p/g is a rational number, then

(7) |vz‘--§|>i.

4q2

Equation (7) shows that the approximation (€) cannot be essential-
ly improved for all irrationals & . We can express this by say-

. ing that the approximation of a general irrational by a rational

is measured by the square of the denominator of the rational.
Can you generalize (7) to other irrationals than 4/2 ? Can
you give an infinite set of irrationals for which (7) is true?
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A NEW FIELD '

The field you are most familiar with is the rational field,
but you have also studied the real field and the field of complex
numbers. If you read Section 5, Gaussian Integers, you learned
about the domain of integers in a certain subfield of the complex
field. Here we shall study a new fleld which shows some differ-
ences from the fields you have studied before.

Conslider the subset K of the set of complex numbers consist-
ing of all numbers of the form a + b /-5 (=a + ib {/5 ) , where
a and b are rational numbers. We define two elements of K ,

a +b \/:— , to be equal if they are equal as complex numbers,
i.e., if and only if a =c¢ and b =d . It is easy to check
that K 1is closed under addition, subtraction and multiplication.
(Do this.) K contains 0 =0+ 0 * /-5 and 1 =1 + 0-\/5 ,
The set consisting of all non-zero elements of K 1is closed under
division. (pheck.) Moreover, all the rules of calculation are
satisfied in K since they are satisfied for complex numbers.

In short, K 1is a field; it is a subi'ield of the field of complex
numbers. . .

Call the [ield of rationals R . In R we singled out cer-
tain elements which we called integers. Denote the set of integers
in R by I . It is a little hard to see how we can define
integers in K , but experience has shown that the following defin-
ition 1is satisfactory.

First, notice tnat every element A =a + b /-5 of K
satisfies a polynomial equation of degree 2 whose coefficients

are rational numbters. Indeed, write

B(x) = (x - o) (x - ) = ((x-2a) - v \/5) ((x-2) + b \/75)

= (x-a)2 £ 50° = x° - 2ax + a° + 5b2

Certainly P(x) = O when x = and the coefficients of P are
rational numbers. !'»tice that the coefficient of the leadins term

is 1 :; such polynomials are called monic. %Yhen b = 0 so that
2
)

o = a, the equation becomes (x-a

= 0O ; hence is a root of
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the equation of lower degree,
P(x) =x-a=0

The number o satisfies many polynomial equations, but
P(x) = 0 has the smallest possible degree. This is obvious when
b = 0 since P(x) is then of the first degree. When b # O,
P(x) = O must have the root & = 2 - ib if it has the root &«
(Chapter %, Section 6), so P(x) = 0 1is at least of degree 2
However, there might be more than one monic equation of lowest
degree satisfied by A . Obviously this cannot be if b =0 .

If b # O, any quadratic equation Q(x) = O satisfied by &
must have the factors x - A& and X - a' and no others. Hence,
Q is of the form c(x-& ) (x - 4 ) , where c¢ 1is a real or com-
plex number. But since Q 1s monic we must have ¢ =1 and so
Q 1is identical with P . i )

So we see that each element o of -K satisfies a unique
equatioq\~fix) = 0 which is either 7inear or quadratic. Of
special interest are those elements o of K whose unique monic
equations have net only rational coefficients but rational inte-
gral coefficients. (We now have to say "ratlonal integers" to
denote integers in R Dbecause we. are going to define integers
in K .)

Definition. An element of K 1s an integer in K if and
only if the unique monic equation which it satis{ies has rational
integral coefficients. We write J for tae set of integers in K.

Is an integer in R (faticnal integer) also an integer in
K 2 What monic equation does it satisfy? This shows that I 1is
a subset of J , or as we write it, I J . Algebraic structures
like I and J which are closed under addition and multiplica-
tion, which possess an additive 1dentity (0) and a multipllca-
tive identity (1) , and which satisfy the associative, commuta-
tive, and distributive laws and the cancellation law (ab = ac

and a # 0 imply b = c), are called integral domains.
Let us consider an element =a b -5 of J . The
equation which ¢ satisfies is, as we have seen,

)’.2-28.}’.:{.1?1 ‘)1)2‘—“0

Since of € J , we have that 2a and a® bbg telong to I ;
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. hence; - (Qa)2 + 4(a2 $ 5b2) - 20b> € T . F#fom this you will

be able to déduce that 2b € I , if yau remember théf b 1is
rational. (Do this.) So we have that 2a and 2b are rational
integers; write a = a1/2 , b= b1/2 , where .a; , by € TI.

" Let a° + 5b2 =c¢c, c €I . We have 4a° + 5-4b2'=

<

a., +.5b12 =4c . Now 4 ¢ 1is divisible by 4 ;-hence so is

ai2 + 5b12 . But the square,of\any odd integer has a remainder 1

when divided by 4 . By trying out the four possibie caées

2 2
1t SbL«

1 are both e%en. Therefore,

(a1 even or odd, b1 even or odd), we see that a is

&

divisible by 4 only if a and b

1
a€ I and beI . The integers in K are the numbers of the
form a +b /-5 , where a and b are rational integers.

We can now do arithmetic in J Just as we did in I . Ve
shall use Greek letters A , 2, 2{,...{' to denote elements of.
J . We say ¢{ divides @ ir there isa J € J_such that
A ¥=@ . I X divides G and ¥, then & divides O+
and &~ ¥ . (Even though this is obvious, give a proof of it.)

In I we had twoespecial integers 1 and -1 which divide
all integers. Ve call such an element a unit: a unit is an

integer which divides all intégers. There are two units in I .
What are the¢ units in J ? _
) Let N be a unit in J . Then >\ divides every element of

J and, in pérticular, N' divides 1

Before goling further, we introduce the very cqpvenient notion
of norm: if A& & K , the norm of A& (written No& ) is mere-
ly the producﬁ of X Dby its complex conjugate o . Writing
o =a+b V-5 , we have K o = (a+b /-5) (a-b »/:5) , or

N = a° + 5b°

Invparticular, if o € J , we see that N o 1s a rational
integer whicn,also, 1is positive. Thefe is no 4ifficulty in check-
ing fthat .

(1) N of B =NA - N®

(Do this.)
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Let us return to the matter of the units of J .

unit we havéd \J =1 for
seen that N\ must divide 1

N A

This shows that N )\ = 1,
is positf@e. But, putting
= a +

N X = a
he only solutions ol this
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are a=-1, b =20.

Wwhat we have proved is that if A

equation in rational integers
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J€ J , since we have

is a
some integer
. Using (1)

N Y = 1

since any norm of an integer in K

we get
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) 3
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a, b
then
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We notice tnat i A =1 H A is a unit. The coanveprse is
also tr e: i N =1, A is a init. You will have no 4iffi-

culty in proving

we can row define prime:

+
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factor
by (1),

Since

ization of
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e
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BesideSucérfain of the rational integers, there aré other
integers in K which are primes. . »r example, b+ \/:5 and
4 - /-5 are primes. (Prove.) Other examples are 1 + 2 {/-5,
2+ 3 V5,6 + /5. ' ‘
Of course, the importance of primes is simply that they are :
the multiplicative building blocks: every rational integer ndﬁ a
unit is a product of pfimes. (See Chapter 9, Section 3;) Is the

o

T

same result true in J ? It is. T -

To prove 1it, let S be the set of nén-units in J which do
not have factorizations into primes. If S 1is empty our result
is established, so we assume ’S is not émpvy. Tet N be the set
of positive integers 'which are *the norms of elemenps of S . Then

N 1s a non-empty set of integers > 1 “(beéause S contains no
units); as such it has a least element a (Chapter 9, ‘Section 3).
Every element of J whose norm 1s less than a (ana > 1) does
not belong to S . '

Let be an element of S such that No = a . Then q‘_
has no factorization into primes. If J 41is prime, we have the
trivial factcrization o =« ; hencé, o 1is not prime. It
follows that o = 6 Z , where neither 6 nor b/ is a unit or is
T . Since N =NB . N¥ , so that N©O divides Nd , we
have 1 < N@ < Net and also 1< NI < N

This shows that O 9/ S, for NG < a . Hence, 8 has a
factorization into primes. By the same reasoning, J has a

factorization into primes. Multiplying these two factorizations
together, we see that X has a factorization into primes. This
contradiction was obtained on the assumption that S was not
empty; hence S 1is empty and our result is proved.

In the rational field, factorization into primes is unique:
no matter how we factorize an integer we always get the same
primes, each occurring the same number of times. F.g., 60 = 30-2
=15-2:2 = 5-3-2° , €0 = 10 = 2:3°2-5 = 2°-3-5 . Only the order
in which the factors occur 1is 4different. DBut this 1s not true in

every field.
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Consider 21 as an integer in K . We have-
(2) 21 =3 + T
21 = (4 + /-5) (4 - /-5)
As we have seen, the integers in the right members are primes in
J. Furthermore, they differ by more than just units, i.e., 3 1s
not equal to aﬁy other factor times a unit. ,Here, then, we have
two essentially different factorizations of 21 in J . Factoriza-
\ tion into primes iﬁ J 1is not unique.
The central theorem used in the proof of unique factorization
in the rational field is the following: if a prime p divides a
product ab , then p divides either a or b (or both). This
theorem, however, is false in J . For from (2) we deduce that
4 + /-5 divides 3-7 (since it divides 21), but it does not
divide either 3 or T . If we assume, e.g., that

(4 + VBIL =T,

I

we get, taking norms,
21l = N7 = 49 ’
so that NA& 1is not a rational integer as it has to be.

Unique factorization can be restored to K _by introducing
certain new elements called ideals. Every non-vhit'integer in K
is a unique product of prime ideals. You will learn this beauti-
ful theory if you continue your mathematical studies in college.

N\ ’

f e
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ANSWERS TO QUESTIONS

Arithmetic Functions I

Number of

Divisors

Divisors

Integer
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1. No. All other integers will at least be divisible by 1

\ and the integer itself. Hence the number of divisors will be

\\ greater than or equal to 2 .
2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
\\\E 4, 9, 25 . Yes. »They are all perfect squares. Yes. 16.
very number with exactly three divisors is a perfect square.
25 numbers have -an even number of divisors. 1, 4, 9, 16, 25
do not.
42, 90.
The 14 numbers 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23,
25, 29. They are all primes or powers of a prime. Guess: it
nust be a power of a prime. 4. 6. 4. 6. n+ 1. n*1l. The
number of divisors of an integer n 1s a prime if and only if Qif/

p-1 -

n =q where both p and q are primes.

ad -~

Number of times n
appears as a numb

- n of divisors L8
1 . 1
2 10
3. 3 -
4o 9
5 1
6 - 4
7 0
8 2

The number of divisors of the integer n 1s odd if and only
r\
if n 1s a square.’ e e
24 and 30 have 8 divisors., Yes. 36 has 9 divisors.

Yes. 48 has 10 divisors. No. T
S —— ,
60, 72, d 96  all have 12 divisors. .
m. m ‘ ' -
1 2 Q -
For n =p;"py," ... prr, r(n) = (m1 +1) . /// ,
(m2 + 1) ... (mr + 1) . ) -

. . . A
12, 18, 20, 28, 32, 44, 45, 52, 63, 68, 75, 76, 92, 99 .
144 . : :




' . s
. 3. 7. DNone. At most one. Since -1 = (x - 1)
, ‘ e (xk';|t ..... + 1),
‘ if x > 2 the number is not a prime.
\
\
N\
; \
“ -
o
» ¢
i
._‘ "\ !
\ n
\
P
4
A {») ~—/
g
A ' -

vl
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: Arithmetic Functions II

. The first few perfect numbers are 6; 28; 4o6; 8128;
23,550,336. The first four were known by 100 A.D. Until 1870 only
four more had been found. Between 1870 and 1950 four additional
ones were found. '

n Divisors of n ' _Q/jgl
1 1 1 D
2 1, 2 3 D
3 1, 3 ) D
4 1, 2, 4 7 D
5 1, 5 6 D
6 1, 2, 3, 6 .12 P
7 1, 7 8 D
8 1, 2, 4, 8 15 D
9 1, 3, 9_ 13 D
10 1, 2, 5, 10 18 D
11 1, 11 12 D
12 1, 2, 3, 4, 6, 12 28 A
- 13 1, 13 14 D
14 1, 2, 7, 14 24 D
- 15 1, 3, 5, 15 ‘ oY D
16 1, 2, 4, 8, 16 31 D
17 1, 27 18 D
18 1, 2, 3, 6, 9, 18 39 A
19 1, 19 | 20 D
20 1, 2, 4, 5, 10, 20 _ 42 A
21 1, 3, 7, 2 32 D . ’
22 1, 2, 11, 22 36 D
23 1, 23 24 D
24 1, 2, 3, 4, 6, 8, 12, 24 60 A
25 1, 5, 25 31 D
26 1, 2, 13, 26 42 D
27 1, 3, 9, 27 ) 40 N
28 1, 2, 4, 7, 14, 28 - 56 P
29 1, 29 30 D)
30 1, 2, 3,'5, 6, 10, 15, 30 72 A




(1 +

"23 ‘are deficient,
If p 1is a prime

. 61
5 are abundant, and 2 are perfect.

B(n) =p+ 1.

1, p, p2:---:pk .
ekl
p -1 ,
2
1, p, P2:---:pk: q, pd, P Q:---:pkq . 2(k + 1)
p + p2 = .+ pk) +q(l +p+ p2 + ...+ pk)
= (1 +q)(l +p+ ...+ pk)
el
= (1 +aq) E—_B_:—T
2 2 2
_1: P, p2:---:pk: d, pds; P Q:---:ka: q, pq2: p q2:---:
pkq2 . 3(k + 1)
. 2) k+l _ 4 q3 -1 Pk+1 -1
AT/ =T TTg-1 p -1
k+l 4 . qs+1 -1
p -1 qQ -1
m1+1_ ) m2+1 i mr+1 o
c{(n) =P Po Pr
pl-l p2-1 pP—l
2 2
_ . 2 -1 .3 -1 _ 2.4 =
6-23; 0(6) =21 -3 =1-34=12,
3 2
2. 291 3 -1 _
12 = 2.3 ; ((12)-2 T 5 1_7.4_28.
18 = 2.3° ; J(18)—22 1-33"1—3-13—39
- ’ -2 1 3 -1 - ‘
ok = 23.3 ; o/(zt+)—24 1.3%-1_ 154 - 60
= ; = -1 3-1- it =00
3 2 -~
PY-Ss _2 l ., 77 -1 _ 5.9 _
28 =2°7; (f(28) =55 - L= =78 =56
. 2 2 2
PSP 22 -1 321 5% - _ B
30 = 2.3:5 ; J(so)_g_lt& T3 ﬁ_3.4.6_72
5 3
144 = 2t 32 ((144):22:% 3=1-23123 =403 .
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Arithmetic Functions III

One of any two consecutive integers must be even. Therefore
asiQeAfrom the pair 2 and 3 , any other pair of consecutive
integers must contain an even integer greater than 2, which is
composite.

Exercise 1.

The primes less than 100 are 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

- Exercise 2.

The twin primes less than 100 are 3, 5; 5, 7; 11, 13;
17, 19; 29, 31; 41, 43; 59, ©01; 71, 73.

Exercise 3.

m(10) = 4 , w(20) =8 , w(30) = 10 , w(40) =12 , w(50) =
T(75) = 21 , W(lOO) 25

Exercise 4.

Proof: Suppose n 1is not prime; then n = pq where p is a
prime 1 < p < n . By hypothesis p > \/n . But then q < 1/n
(o*herwise n =pgq > Vvn - /n =n) . Therefore q mst = 1,
since if q # 1 it has a prime divisor.which. is. < .y/n. .
Therefore q must = 1 , since if q # 1 it has a prime divisor
which is < \/H and which divides n , contrary to hypothesis.
If q must be 1 , then n 1s prime. q.e.d.

Exercise 5.

1781 = 13-137 ; 4079 is prime.

Exercise 6.

. The primes greater than 100 and less than 225 are 101,
163, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 1€3, 167,
173, 179, 181, 191, 193, 1¢7, 199, 211, 223 .

Exercise 7.

T(150) = 35 ; w(225) =

Exercise 8.

m(200) = 46 and w(100) = 25 . The ansver is 21

Exercise Q. )

7m(n) _ 664,580 __ 684,580 _ £04,580 _ 1.07°

n__ M = T3R2Gh5 ~ 623,278 ©

log n 10,000,000 7 T
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The Buclidean Algorithm and Linear Diophantine Equations

63x + 7 = 23y y
LR 63X+7=23Y

o -4

A 10 16 X

No.

No. 3x + 6y = 3(x + 2y) = 13 . Three does not divide
thirteen, so that there are no integers x and y for which this
equation 1s satisfied. r

3x + 6y = 24 . Solutions: (%, 2); (6, 1); (2, 3) . Yes.
Three solutions. (2, 3). (6, 1).

2x -y =6 . (4, 2) . Yes there are infinitely many.

X =44+t . y=2+2t is a solution for any integer t . Any
non-negative t glves a positive solution.

‘Yes. If the slope, —a/b is positive and there is a solution
at all, then there are infinitely many positive solutions. If the
slope 1is negative and there is a positive solution, then there are
only finitely many. An equation may have solutions, and yet if
the slope is negative it may have no positive solutions. Then of

— -course there may be no solutions in integers at all.
(1), (5), and (6}. Yes. VYes. If ax + by = ¢ has a solution
in integers, then (a, b) = d divides ¢
Proof: Let a = da' ; b = db' . Then da‘x + db'y = ¢
Hence if there is a solution d divides ¢
Yes. For (1) . (2, 3) =1, 1 divides 5 and (1, 1) is a
solution,
For (5) . (4, 6) =2, 2 divides 8 and (2, 0) is a
solution.

£,
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For'(6). (2, 4) =2 , 2 divides 4 and (2, 0) is a
s solution.

Factor each number. Take all prime factors common to both
numbers_ and raise each to the smallest exponent to which 1t appears
in either number : *

See proof which follows. -

Theorem: If d divides a and d divides b, then d
divides a + b and a - b .

Proof: Let a = da' and b = db' . Theh a +b =da' + db!?
= d(a' + b') (Distributive Law). Therefore d divides a + b .
a2 - b =da' - dbt = d(a' - b') (Distributive Law).

Therefore d divides a - b . .

253 = 11-23 ; 122= 2,61 . (1596, 96) = 12 . (418, 1376) = 2 .
(365, 146) =73

Yes. Given any positive integers a and D with say, 2
greater than b , then there always exists integers aQq and ry

such that a = bgy + r; with 0 $r) <b. Simlarly
= ) < .
b = rlq2 t Ty with 0O = Ty < ry - Continuing in this way we 1ave

a decreasing sequence of positive integers. There are only b -1
positive integers less than b . So that after at most b -1
steps the remainder must be zero. If a and Db aren't positive
integers, we can still find their greatest common divisor by using
the algorithm on |a] and |b| , which are positive.

If Xy and Yo is a solution then X, + b and Vo - @ is

also a solution.

General Solution: Suppose Xy and Yo satisfy the equation

and suppose x and y are any other solutlon. Then ax + byo= c

and ax + by = ¢
. If we subtract we get a(x = x.) +Db(y - y,) =0 .

a(x - x,) = -o(y - ¥,)
Divide by d

&(x - x,) = -3(y - ¥,)
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Since a/d and b/d have no common factors, X -.X, must be

b 7

b . _b >’
div%sible by 3 let x - Xy =3 t . gghen substi?uting we have
ab _ _ b _ _ _ _a
Fat=-4a (y yo) , ‘and Yy -V¥=-gt- Consequently

b
X = X, + 3 t,
Yy a¥, - % t ; is a solution for every
integer t
CHECK:

[

ab ab , _ | _
ax, + byo + _E't - _E't = ax, + byo =Cc .

Yes, it is clear that any solution must have this form since

x and y were assumed to be any solution of the equation and it
followed that they had this form for some ¢t .
5. Yes. x =5 - 23t, y = 14 - 63t

Answers to Problems:

1. x=3+7t,y =79 - 16t
x =170 , y =110 ; x =923 , y =9 .
(x = 923 + 753t , y = 9 - 101t).

3. 5and’6 . (5 + 15t , 6 + 17t).

4, &4 (9 - 795 , 4 - 37t).

5. x =4 445t , y =1 + 14t

6. x =27 + 63t , y = 15 + 40t
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Gaussian Integers

Exercise 1.
Let the numbers he a =2n +1 and b =2m + 1
Then a° + b° = (2n + 1)2 + (2m + 1)2 = 4(n2 +m° + 0+ m) + 2

Therefore for a and b odd, 22 4 b2 leaves a remainder 2

when divided by #4 and conseguently is never a multiple of 4

cxercise 2.

Let the Gaussian integers be a +.bi and ¢ + di1 ; a, b, ¢, d
rational integers. (1) (a +bi) + (c +di) = (a £ ¢) + (b + d)i .

Since a + ¢ and b + d are rational integers the sum and
difference are Gausslian integers.

(2) (a + vi){c + d1) = (ac - bd) + (ad + be)i .

Again since‘ ac - bd and ad + bec ere rational integers the
product is a CGaussian integer. .

Exercise 3.

No. % is not a rational integer.

Exercise 4.
ol

No. 2 and 3 are Gaussian integers and % is not a Gaussian
integer.

Exercise 5. ‘ -

—_—
No The quotlent is i% + %%1 which is not a Gaussian integer.
Yes. 2 + 31 = 1(3 - 21).

Exercise 0.
Yes. 3 4 111
Yes. 3 + 111

(2 + 31)(3 + 1)
-1(-11 + 31)

Proof of Lerma: N(d(3) = N(of IN( G
5 Leto\’=a—.~bi,6=c4di.
Thencﬁa = (ac - bd) + (ad + be)?
IﬁGﬁ@) = (ac - bd)2 + (ad + be)
22 2.2 2.2 22
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Exercise 7. . o : ) .
If a{ and é; are_associates, then (A =65 ‘U, where u ¥s a

unit.
' Then by the Lemma N(éX )

N( G )N(u) : 1

N( 3 )1 since n(u) ='1 by

Theorem 1.

N(& ). q.e.qd.

Exercise 8.
.No.5=(2+i)(2-—1).N(2+i)=N(2-i)=5.
: Therefore 2 +1 and 2 - 1 Aare not units. N(5) = 25 and
they are not associates of 5 by Exercise 7. Therefore 5 is

i - not a prime, since it has divisors which are neither un?.s nor
: associates of §5 . ’ )

% Exércise 9.

i ' Yes. For suppose 3 = &*fg.

' Then N(3) = N(A )N(® ) =9 .
Then N(xX ) =1, 3, or 9. 1If Nie¥) =1, is a unit.
It N )=9,then N(8)=1 and B is a unit.

"Hence N(ol ) must be 3 if 3 1is not to be a prime.
But N( & ) = a° + b° = 3 1s impossible for vational

integers a and b . Therefore 3 has no divisors except units
and associates of 3 and is therefore a Gaussian prime.
Exercise 10.

We consider all possible cases for rationzl integers x and y.
Case I: x and y both even; let x =2x!' , y = 2yt

X2 + y2 = 4(x'2 + y'2) #4n + 3 for any rational integer

n

Case TI: x and y both oid; let x = 2x*' + 1,

x° + y2

y=2y' +1

(2x' + l)2 + (2y! + 1)2
2

4(x1° + v!
rational integer n .

+ X' +y') +2 %45 + 3 for any

Case III: one even and one odd; say x =2x!' , y = 2y' + 1

x2 = y2 = 4(x'2 + y'2+ y') + 1 #4n + 3 for any

rational integer n . Therefore x° + y2 # b4n + 3
gers X and y . g.e.d.

o

for any inte-

69
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Exercise, 1l.

Yes Suppose 1 + i = 0(6

N(1 + 1) = N({ )N(E )
2 = N NS ) i

But since N( ) and N( 6 ). are rational integers, one of
them is 2 and the other is 1 . Suppose N(of ) =1 ; then o
is a unit. Therefore 1 + i 1is a prime since it cah only be -

written as a unit times an associate of 1 + 1 . \
Exercise 12. . o }

Yes. N(1 - i) = 2 and we can repeat the same argument given -

in Exercise 11.
Exercise 13.
No. Since every rational integer is a Gaussian integer, a

composite rational integer a = bc has as divisors the Gaussian
integers b and c¢ which are not units or associates of a .
Exercise 14.

(a) 5 =22 +1° (@) 29 =22 + 5°
(b) 13 = 2% + 3° (e) 101 = 10° + 17
(c) 17 = 4° + 1° (£) 1721 + 11° + 40° a

.
<
4 o

¢
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Fermat's Method of Infinite Descent
o  [Exercise 1. _
s 37262 412 ;41 =52 £+ 42 ; 89 =52 +8%; 101 = 10° +1°
Exercise 2. ! '
- . : 2 2 2 *
. Given: d divides x , d divides 2z , and x +y =2 .
Show: d divides y ]
S Let x = dx! , 2z = dz!
[3 . AY
N d2xt2 + y2 = d2z'2 ,
) . .- y2 _ d2(z}2 _ x'2)
£ Thérefore, .d7 divides. y° and d° divides y
“Exercise 3. ) '
If g number is odd its square is odd. If x , y , and Zz*
are all odd then x25+ y2 is even; but x2 + y2 = 22 and 22 is

odd. This contradiction shows that not all three numbers can be
odd.
"Exercise 4. {
If a number is even, its square is even; if a number 1is odd,
its square is odd. Consequently, the sum or differencé of the
squares of two even numters is an even number and it is impossible,

-—
~ 2 . . o 2 . X .
therefore for z° to be odd. BRBut if =z is even, then®so is z

Exercise 5. : .
Given: Z ani y have no common factors; z +y = ov? ;
2 -
zZ -y = 2w
’ Snow that v ard w have no common factors. ) .
- Suppose v ani w have the common factor 4 #1 . -
o A ) 2 '
. Then addin.; z o~y =2V : a
: . \
L -y = 2w
. . " o 2 >
N oo 2 w’) , v ="t ow
. Y
S.vtractis - ~tOT " '\\i; ° 2
v ('( B - % ) A N - W
. - »~
If 4 diviies v, and 1 Adivides w , then 4 Adlvides _Jd
- 2 . o 2 .
/J‘ v s w =2z ant | -diviies v -'wz =y , contrary to the hypoth-
‘esis. There:iore v ani w nave ro common faztors. ' v

' T 1) -




Approximation of Irrationals by Rationals

Assume that no box contains more than one object. Then the

total number of ob ects is not more than n . This contra-
Aicts the fact that n - 1
Theorem: If m 1s a positive integer which is not a perfect

ot jects were ‘vlaced in the boxes.,

square, there 1is a constant ¢ > O depending on m such that

4

no rmatter what tne rational nunmter p/a may be.
Proof: Let r Ute the intezer such that r - 1< Ym<r

Note that r >

Caze 1.
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A New Field
1. (a+ Db ;/-_%74;(0 +d /5) = (a+c)+ (b+3d) /5
, - o /
. =a) + b1 5
(a+b /-5) - (c +4 I/-5) = (a -¢) + (b -4d) /-5
= a2'+ b2 V-5
(a + b }/-B)(c +d y-5).= (ad - 5ed) + (be + ad) -5
= a3 $ b3 Y-5 .
Since a, b, ¢, 8 are rational, so are a), bl’ s, b2,
a,, b, . —~
N 3 3 ‘ :
2. Since
a+.b Y5 _ac+ 512)d + (gc,- ad) /-5 _ a, + b, /5
c + d V-5 ¢ + 54
when ¢ + & /-5 #0 (i.e., not both ¢ and 4 are 0),
we have a1 R b1 are rational since a, b, ¢, d aré?
3. An integer o In R 1is also an integer in K , since
o satisfies the monic equation of smallest possible degree
( Xx - =0 . This equation has cdoefficients in R since
~ = isin R. ' ~—
L, Write b = £ , where p, q are inte 0 common
: a _ 9
factors (except 1). Ve have 20b° = 5l p2/q2 is a rational
integer. So q2 rmust divide 20 since it has no factors
which divide p2 . q2 “cannot divide 5 because 5 has no
) factors which are squares. Hence, q2 mist divide 4 ,
i.e., q2 =4 . Then q =2/ and 2b = 2p/q = p is an
4
integer, as claimed.
5. Let ddivide@ and J . Thcn6=0(@/1, J’:-o(fg.
. So 63-+2¥'=(q Cf; + Oﬁc(é = 4 ( aﬁz + gf;)..
. Hence, & divides @ + ¢ . Similarly, A divides B -




10.

Use the theorem (Chapter 5, Section 5) that the conjugate of
a product of complex numbers is the p_;:)duct of the conjugates:
NAB) = (AB) (AB ) = (ABN(AB) = (off N ®E) =
Ng NG .

If nA=1, A=a+b /-5, we have a + 5b° = 1, the
only solutions of which in rational inte‘ger-s are a=21,
b=0. Thus A = =1, so A is a unit. -

Since a, b are rational integers, we have a2 + 5b2

v

562 >3 if b £ O . Therefore, ‘b =0 . Hence, a =3,
which‘is impossible.

Iet p be a fational prime of the form &4n - 1 , and con-
sider the factorization p =o(6 , where & , 6_6:]—. Taking

norms we get p2 =NX - N6. Since No 1is a rational

integer, we have either N = p2 , p,orld . In the first
case we have N 6 =1 s SO G 1is alunit; in.the last case,
o is a unit. Consider N« =p and let (=a+b V-5 .

This gives a2 + 5b2 =p . If a2b are both even, the left'

member is even. If a2b are both odd, .the left member is

even, since a2 and 5b2 are both odd. If a 1is even, b

odd, or if a is odd, b even, the left member is of the
form 4n + 1 . Hence, it 1s .impossible that n « =p .

Thus the factorization p = o(g is possible orily ifex or 3

is a unit in J .

If 4+\/-_5=o(@,wehave 21=N0(-N6.Now

NS #¥ 3 or 7, for as vie just saw, N4 = p 1is impossible
when p is of the form 4n - 1 . Therefore N« =1 or
N& =1, so that either & or (3 are units. Same proof

for 4 - Y5 . ;
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1, 2, 4, 8, 9, 16, 18, 25 . They are elther a square or
twice a sguare. If GKn) is odd, then n 1is a square or twilce

a square.
Proof: .
m,+ 1 +1 m_+1
p 1 p“‘e -7 p ol -1
Given: @ (n) = 1 . -2 — L odd
pl - 1 npe - 1 pr - 1 :

Then each factor of the product imust be odd.
If Py = 2 y then m, may be any integer > O .

If p; 1is odd, all the powers of pi‘ will be odd. Since

©

m. '
1l + Ry + pi T pii must be odd, then mi+1 must be o0dd;
i.e., my is even.' Let my = 2ti
: m o 2t, 2ty 2t , )
Then n has the form n = 2.7 py, Py C e p} and we
may write ) . . .
ml =1 )
t t t
2 2 73 T2
‘ 2 (2 Py~ P3 - Py ? if omy is odd
n = ml-l ’ .. -
= t, ¢t t
(2 2 | p2d p33.. .. prr)2 if m; 1is even.

q.e.q.

In the second case n \Xﬁ clearly =z square. In the first case n
is twice a square.

If n = 2m-1(2m_1) and 2™-1 "is a prime, then n 1is a
perfect number.

br-oof': .
We need only show that GKn) = 2n . The prime divisors of
n are 2 and 2™-1 . We can make this statement -only

because we are given that oM. is a prime.

. m m 2 '
Then G(n) = g_.:l (g_i>_;__]: = s~

2 -1 (2m_1) -1

oo ety vy ((2M) - 1),
(27-1) (2" -1) - 1)

¢
Iy

{0
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only
and

(1)

(1)
. (2)

-1
ml)m2

(2M-1) (2™-141) = 2™(2™-1) = 2n .

If m=6, 2mﬁ1 1s not g prime.

If m=7, 21 4s a prime.

If m=8, 2™1 is not a priﬁe.

If m 9 , M_1 is not a prime.

If m 10 , oM_1 is not a prime.

If m 11 , oM.1 is not a prime.

If m 12, 2M™.1 is not a prime.

If m=13 , oMm.1 is a prime.

If m 1is not prime, then 2™-1 4is not prime either.

Proof: Since m 1s not prime, let m =m,-m, , where
.and m, are greater than 1 .

/
Thon 2™ =2 12,3 - (2m1)m?-1 = (2m1—1) (2
f(2m1)m2_2' + ...+ 2 " + 1)
Since 2m1 > b, 2m1\

-1 >3 and 2 M1 4s not a prime. q.e.d.

ez SR

.\-

——

Every even perfect number has the. form om-1 (a™-1) where

is a prime.

Proof':

(Lemma:

O/(m n) =

Crkm) . CT?n) .

‘ ToSprove this, one

needs to write out the expréssions for G/(ﬁ-n) , (O (m)

0 '(n) "

-Let

G (n)

and verify

that G (mn) =

n = 2mq , Wnere q 1is odd.

= 2(n) =2

m+1
a

But by the lemma, cfini = o(=2™

we have

67(2™ O(q) = 2™g

O (m)

Since

0a)

-n

0(n).)

is perfect

Substituting in
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Now <7Q2m) = o™l 1 | substituting in (2) we have
(3) (2"a) g(a) = 2™q

S From (3) we see that 2
: m+]

q = (2" -1)q” .
: m+l .y, 7
On the right hand side of (3) replace q by (27 ~-l)a ,

m+1

m+1_1 divides q . Suppose we set

and dividing both sides-by (2™ "-1) we have

(4) C;(q) = 2m+1q . But q and q/ are divisors of q and
,
q + d =aq ol G(q) . Hence\fhese are the only
. divisors of q. and q must be a prime and q/ mist be 1 .

m+1

Therefore q = 2 -1 and q 1is a prime. Butathen

m+1

7
n = 2M2™_1) q.e.q.

Let the divisors of' n be d1 R d2 R

! t '
dl + d + ... +d

Then % +% + ... +% =
1 % k

Since n 1is -erfect. (It should be shown that all d; are

distinct and actually include all divisors of n and each
only once.)

\ Another way of stating this result is:
\
1 U'_/l(n)=ﬂ

n

In fact a more general result holds:




